
TORIC VARIETIES

JOAQUÍN MORAGA

Abstract. This is a very short introduction to some concepts around toric
varieties, some of the subsections are intended for more experienced algebraic

geometers. To see a lot of exercises and get more involved with fan structures

you can read [2], and to learn more about Cox rings you can read [1].

1. Affine Toric Varieties

1.1. Affine Toric Varieties from characters. In this notes, we denote by K
an algebraically closed field of characteristic zero. We denote by N a free finitely
generated abelian group and by M its dual. Given an element m = (a1, . . . , an) ∈
M , this gives a character χm : (K∗)n → K∗, defined by

χm(t1, . . . , tn) = ta11 · · · tann .

Observe that any character of K∗ arises in this way. Given a finite set A =
{m1, . . . ,ms} ⊂M , this gives a map

ΦA : TN → Ks,

where TN = Spec(K[M ]) ' (K∗)n, where n denotes the rank of N . The affine toric
variety YA is the Zariski closure of ΦA(TN ). The dimension of Yα is the rank ZA.

Given the map Zs → M mapping the canonical basis e1, . . . , es to m1, . . . ,ms,
we denote by L the kernel inducing a short exact sequence

0→ L→ Zs →M,

given l ∈ L we set

l+ =
∑
li>0

liei and l− = −
∑
li<0

liei,

where l = (l1, . . . , ls) ∈ L. The ideal IA defining the affine toric variety YA ⊂ Cs is

〈xl+ − xl− | l ∈ L〉.

In particular, the ideal defining an affine toric variety is always binomial.

1.2. Affine Toric Varieties via cones. Let σ ⊂ NQ be a polyhedral pointed
cone, then its dual σ∨ ⊂MQ induces a semigroup Sσ = σ∨ ∩M , therefore we have
a induced ring K[Sσ], so we obtain an affine toric variety

Uσ = Spec(K[Sσ]) = Spec(K[σ∨ ∩M ]),

is an affine toric variety. If σ is full-dimensional and pointed, then σ∨ is full-
dimensional and pointed as well, the maximal ideal of K[Sσ] induced by the full-
dimensional face of σvee corresponds to the unique fixed point of Uσ by the torus
action.
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We say that a semigroup S ⊂M is saturated if for each k ∈ N−{0} and m ∈M ,
km ∈ S, implies that m ∈ S. For example, if σ ⊂ NR is strongly convex rational
polyedral cone, then Sσ = σ∨ ∩M is saturated.

Theorem 1.1. Let V be an affine toric variety with torus TN . Then the following
are equivalent:

• V is a normal algebraic variety,
• V = Spec(K[S]), where S ⊂M is saturated affine semigroup,
• V = Spec(K[Sσ]) ' Uσ, where Sσ = σ∨ ∩M and σ ⊂ NR is a strongly

convex rational polyhedral cone.

More generally, there is a correspondence between the category of strongly con-
vex rational polyhedral cones with linear morphism and affine normal toric vari-
eties with TN -equivariant morphisms. Moreover, there is a one-to-one dimension-
reversing bijection between the subcones of σ and the oribits of Uσ. Clearly, since
every ray of σ is saturated, the singularities of Uσ appears in codimension 2.

1.3. The Normalization Morphism. Given an affine toric variety V , its cor-
responds to the spectrum of the ring over a semigroup S ⊂ M , meaning that
V ' K[S], let Cone(S) the cone generated over the positive rational numbers by
the elements of S, then we can set σ = Cone(S)∨ ⊂ NR, this will be a rational
polyedral cone, and we can associate a toric variety Uσ. The inclusion of rings
K[S] ⊂ K[σ∨ ∩M ] induces a birational morphism of toric varieties Uσ → V that
is the normalization map of V . In other words, the normalization process for toric
varieties corresponds to the saturation of the corresponding semigroup.

1.4. Smoothness of Affine Toric Varieties. We say that a cone σ ⊂ NQ is
smooth if σ ∩N has exactly rank(N) extremal rays and it spans N over Z. We say
that a ccone σ ⊂ NQ is simplicial if it is full-dimensional and has exactly rank(N)
extremal rays. Since automorphisms of NQ induces isomorphic toric varieties we
can see that any smooth cone σ ⊂ NQ induces a smooth affine toric variety Uσ and
any simplicial cone σ ⊂ NQ induces a finite quotient singularity affine toric variety
Uσ, which is still a Q-manifold.

2. Projective Toric Varieties

Consider the following exact sequence of tori

1→ K∗ → (K∗)n+1 → TPn → 1,

where TPn represents the big torus of the projective space Pn. We denote the
right hand morphism of the above exact sequence by π. Consider a set A =
{m1, . . .ms} ⊂ M as before, and compose ΦA with π, and we define the pro-
jective toric variety XA to be the Zariski closure in Ps−1 of the map π : ΦA. XA is
a toric variety of dimension equal to the dimension of the smallest affine subspace
containing A, and moreover YA is the affine cone of XA.

2.1. projective varieties via polytopes. Given a polytope P ⊂MR we will say
that it is normal if

(kP ) ∩M + (lP ) ∩M = ((k + l)P ) ∩M,

for all k, l ∈ N, where + denotes the Minkowski sum. Observe that P ⊂MR is a full-
dimensional lattice polytope of dimension n ≥ 2. Then kP will be normal whenever



TORIC VARIETIES 3

k ≥ n−1. As a corollary we conclude that any polytope in R2 is normal. We say that
a lattice polytope P ⊂MR is very ample if for every vertex m ∈ P , the semigroup
SP,m = N(P ∩M −m) generated by the set P ∩M −m = {m′ −m | m′ ∈ P ∩M}
is saturated in M . Observe that a normal polytope P is always very ample.

Let P ⊂MR be a very ample polytope relative to the lattice M , and let dim(P ) =
n. If P ∩M = {m1, . . . ,ms}, then XP∩M is the Zariski closure of the image of the
map TN → Ps−1 given by t 7→ (χm1(t), . . . , χms(t)) ∈ Ps−1. If we fix homogeneous
coordinates x1, . . . , xs for Ps−1, we can see that for each mi ∈ P ∩M the semigroup

Si = N(P ∩M −mi),

induces the affine toric variety XP∩M ∩ Ui, where Ui is the open affine set of Ps−1

corresponding to xi 6= 0. Meaning that we have an isomorphism of schemes (if we
forget about the schematic structure, this is just an isomorphism of the underrlying
analytic variety).

XP∩M ∩ Ui ' Spec(K[Si]),

and therefore we have that

XP∩M =
⋃

mi vertex of P

XP∩M ∩ Ui.

2.2. Fan structure of a complete toric variety. We define a fan Σ to be a
finite set of pointed convex polyhedral cones of NQ such that the face of any cone
in Σ is again in Σ, and the intersection of two cones in Σ is a face of both. Given
a fan Σ we can define a toric variety, denoted by X(Σ), by gluing the affine toric
varieties X(σ) and X(σ′) along X(σ ∩ σ′) whenever σ and σ′ are cones of Σ. Any
µ-dimensional face of σ defines a (n − µ)-dimensional orbit of X(σ). The above
gluing is along T -invariant subvarieties, then X(Σ) is also endowed with a T -action.
We denote by Σ(µ) the set of µ-dimensional faces of Σ. Therefore, given a fan Σ,
the TN -invariant prime divisors of X(Σ) are in one-to-one correspondence with the
rays of Σ, and then we can ask whenever a linear combination of such divisors Dρ

is an ample or very ample divisor of the corresponding toric variety. We will see
later that any polytope that is normal, and in particular very ample, comes with a
natural ample divisor in our toric variety.

2.3. From polytopes to Projective toric varieties. Now, we recall the con-
struction of projective toric varieties from polytopes. Given a full-dimensional
convex compact polytope P ⊂ MQ, we denote by ΣP its dual fan and X(P ) the
toric variety associated to the dual fan. Observe that we can write

P = {m ∈MQ | 〈m, ρi〉 ≤ −di, for i ∈ {1, . . . , r}}

for certain integers d1, . . . , dr. The divisor DP =
∑r
i=1 diDi defines an ample divi-

sor on X(P ), and we say that DP is the divisor of X(P ) associated to the polytope
P . Observe that different polytopes can define exactly the same toric variety if they
have the same dual fan, but the associated divisors will define different embeddings
into projective spaces. We say that a polytope is smooth if it defines a smooth toric
variety.
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2.4. Fan and polytope duality. Given a polytope, we can constrcut a normal
dual fan of the polytope, such that both, the fan and the polytope induce the same
toric variety. The idea, is that we can embedd our polytope in ∆ ⊂ NQ, and the
we look at the function min〈∆,−〉 : MQ → Q, and this function will be piecewise
linear, we define the cones of our fan by the cones where this function is linear.

3. Cox Construction

3.1. The Cox Ring. In what follows, we will denote by X(σ) the affine toric
variety induced by the rational pointed polyhedral cone σ ∈ NQ.

Given an algebraic variety X, we denote by WDiv(X) the group of Weil divisors
of X and PDiv(X) the group of principal divisors of X. For a toric variety X(Σ), we
denote by WDivT (X(Σ)) and PDivT (X(Σ)) the group of T -invariant Weil divisors
and T -invariant principal divisors, respectively. There is a bijection between the
T -invariant divisors of X(Σ) and the one-dimensional faces of Σ. We denote by
ρ1, . . . , ρr the primitive lattice generators of the one-dimensional faces of Σ, and by
Di the T -invariant divisor associated to ρi for each i.

Given an algebraic variety X which is irreducible, normal, with only constant
invertible functions and finitely generated divisor class group, we define its Cox
rings to be

R(X) =
⊕

[D]∈Cl(X)

H0 (X,OX(D)) .

3.2. Construction of the Cox Ring. In what follows we will fix a canonical basis
{e1, . . . , en} of N , given an element ρ ∈ NQ we denote by ρi its i-th coordinate on
this basis. In what follows, to make the computation easier, we will assume that the
cone σ = 〈−e1, . . . ,−en〉 is always a cone of the fan of our torus. We will compute
the Cox ring for this kind of toric varieties (this means, that the projective toric
variety that we are looking, contains an invariant point that is smooth).

Let ρ1, . . . , ρr denote the primitive generators of the one-dimensional faces of Σ,
with r ≥ n + 1 and ρi = −ei for 1 ≤ i ≤ n. Let F = Zr and consider the linear
map P : F → N sending the i-th canonical base vector fi ∈ F to ρi ∈ N . Denote

by δ ⊂ FQ the positive orthant and define a fan Σ̂ in F consisting on all the faces
of δ whose image on N are contained in some cone of Σ. Then P induces a toric
morphism

and we have exact sequences

(3.1) 0 // M
P∗
// E

Q // K // 0

0 // K∗
Q∗
// F

P // N // 0,

where E is the dual of F , P ∗ : M → E the dual map of P and Q : E → K =
E/P ∗(M) the induced projection. Since ρi = −ei for 1 ≤ i ≤ n, we can write

P =
[
− Idn P0

]
Q =

[
P t0 Idr−n

]
,

where P0 is the n × (r − n) matrix whose columns are the vectos ρn+1, . . . , ρr.
Observe that Q induces a K-grading on K[E ∩ δ∨], then we conclude that

Cox(X(Σ)) ' K[E ∩ δ∨]

as K-graded polynomial rings.
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Recall that the group WDivT (X(Σ)) of T -invariant Weil divisors of X(Σ) is
generated by the T -invariant divisors Di corresponding to the rays ρi of Σ. Then,
we have an isomorphism E 'WDivT (X(Σ)) given by

e 7→ 〈e, f1〉D1 + · · ·+ 〈e, fr〉Dr.

Moreover, the injective morphism P ∗ identifies M with PDivT (X(Σ)). Thus, we
conclude that K ' Cl(X(Σ)) and we can write

(3.2) Cox(X(Σ)) ' k[x1, . . . , xr],

deg(xi) = [Di] ∈ Cl(X(Σ)), Spec(Cox(X(Σ))) ' Kr.
Denoting by H = Spec(K[K]) the torus acting on Cox(X(Σ)) we have that the

subvariety X(Σ̂) ⊂ Spec(Cox(X(Σ))) is H-invariant and the morphism p is a good

quotient for the induced action on X(Σ̂). In the coordinates 3.2 the complement

V (Σ) of X(Σ̂) in Kr has defining ideal

Irr(Σ) =

〈∏
i∈I

xi | I ⊂ {1, . . . , r} and {ρi | i ∈ I} are not the rays of a cone of Σ

〉
,

called the irrelevant ideal of Cox(X(Σ)).

3.3. Automorphism group of a Complete Toric Variety. Now we turn to de-
scribe the automorphisms of X(Σ), which are induced by H-equivariant automor-

phisms of X(Σ̂). First, observe that any element t ∈ T defines an automorphism
of X so we can identify T ⊂ Aut(X(Σ)). We denote by Aut(N,Σ) the subgroup
of automorphism of N preserving the fan Σ, any such automorphism induces an
automorphism of X(Σ). Finally, we say that m ∈M is a Demazure root of Σ if the
following condition holds:

There exists i ∈ {1, . . . , r} such that 〈m, ρi〉 = −1 and 〈m, ρj〉 ≥ 0, for all j 6= i.

We also say that such m is a Demazure root of ρi. Observe that given a Demazure
root m of ρi and t ∈ K∗ we have a K-graded automorphism of Cox(X(Σ)) defined
by

(3.3) y(m,t)(xi) = xi + t
∏
j 6=i

x
〈m,ρj〉
j and y(m,t)(xj) = xj for all j 6= i.

This automorphism induces an automorphism of X(Σ). We denote by R(Σ) the
set of automorphisms induced by Demazure roots on X(Σ). By abuse of notation
we also denote by R(Σ) the set of K-graded automorphisms of Cox(X(Σ)) defined
by 3.3. With the above notation, we state the following theorem proved by David
Cox.

Theorem 3.1. Let X(Σ) be a complete simplicial toric variety. Then Aut(X(Σ))
is generated by T,R(Σ) and Aut(N,Σ).
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6 JOAQUÍN MORAGA

Department of Mathematics, University of Utah, 155 S 1400 E, Salt Lake City, UT

84112

E-mail address: moraga@math.utah.edu


	1. Affine Toric Varieties
	1.1.  Affine Toric Varieties from characters
	1.2.  Affine Toric Varieties via cones
	1.3. The Normalization Morphism
	1.4. Smoothness of Affine Toric Varieties

	2. Projective Toric Varieties
	2.1. projective varieties via polytopes
	2.2. Fan structure of a complete toric variety
	2.3. From polytopes to Projective toric varieties
	2.4. Fan and polytope duality

	3. Cox Construction
	3.1. The Cox Ring
	3.2. Construction of the Cox Ring
	3.3. Automorphism group of a Complete Toric Variety

	References

