Module recov_plot

function cond_avg(ss::Array{Float64,2})

generate image of average conditioning

–––

function gplot(nV::Int,E::Array{Int,2},P::Array{Float64,2},Vlab,Elab)

function gplot(nV::Int,E::Array{Int,2},P::Array{Float64,2})

function gplot(nV,nB,em::BitArray{1})

function gplot(filename::AbstractString)

plots a graph with vertices V and edges E, with vertex positions given in P

Analogous to the gplot() function in matlab

The graph can be specified as a graphML file

–––

function imagesc(R::Array{Float64,2},scales::Array{Float64,1})

function imagesc(R::Array{Float64,2},scales::Array{Float64,1},caxis::Array{Float64,1})

function imagesc(R::Array{Float64,2},scales::Array{Float64,1}, caxis::Array{Float64,1},c::ColorMap)

plots images with scales and (optionally) a color axis

to save to a file: PyPlot.savefig("srecov_30.eps",bbox_inches="tight")

–––

function pixel_center(scales::Array{Float64,1},nx::Int,ny::Int)

adjusts scales so that it is pixel centered instead of boundary of pixel centered

–––

function plot_cond_avg(ss,scales)

average conditioning plot

–––

function plot_recoverability(ss,scales,tol=1e-10)

recoverability plot

–––

function plot_smin_avg(ss,scales)

average minimal singular value plot

–––

function process_svd(f::Function,ss_all::Array{Float64,4})

Process svds using a function f that for each case will generate a float image R

–––

function read_experiment(filename::AbstractString)

Reads svds from a previous run

–––

function recoverability(ss::Array{Float64,2},tol::Float64)

generate recoverability image

–––

function smin_avg(ss::Array{Float64,2})

generate image of average minimum singular value

–––