Module recov_plot
function cond_avg(ss::Array{Float64,2})
generate image of average conditioning
–––
function gplot(nV::Int,E::Array{Int,2},P::Array{Float64,2},Vlab,Elab)
function gplot(nV::Int,E::Array{Int,2},P::Array{Float64,2})
function gplot(nV,nB,em::BitArray{1})
function gplot(filename::AbstractString)
plots a graph with vertices V and edges E, with vertex positions given in P
Analogous to the gplot() function in matlab
The graph can be specified as a graphML file
–––
function imagesc(R::Array{Float64,2},scales::Array{Float64,1})
function imagesc(R::Array{Float64,2},scales::Array{Float64,1},caxis::Array{Float64,1})
function imagesc(R::Array{Float64,2},scales::Array{Float64,1}, caxis::Array{Float64,1},c::ColorMap)
plots images with scales and (optionally) a color axis
to save to a file: PyPlot.savefig("srecov_30.eps",bbox_inches="tight")
–––
function pixel_center(scales::Array{Float64,1},nx::Int,ny::Int)
adjusts scales so that it is pixel centered instead of boundary of pixel centered
–––
function plot_cond_avg(ss,scales)
average conditioning plot
–––
function plot_recoverability(ss,scales,tol=1e-10)
recoverability plot
–––
function plot_smin_avg(ss,scales)
average minimal singular value plot
–––
function process_svd(f::Function,ss_all::Array{Float64,4})
Process svds using a function f that for each case will generate a float image R
–––
function read_experiment(filename::AbstractString)
Reads svds from a previous run
–––
function recoverability(ss::Array{Float64,2},tol::Float64)
generate recoverability image
–––
function smin_avg(ss::Array{Float64,2})
generate image of average minimum singular value
–––