Last Name:	First Name:	Uid:			
1(a)		1(b)			
1(c)		1(d).			
1(e)		1(f)			
2(a)		2(b)			
2(c)		2(d)			
2(e)		2(f)			
3(a)		3(b)			
3(c)		3(d)			
3(e)		3(f)			
4		5(a)			
5(b)		6			
7(a).		7(b).			

x-intercept: _____

x-intercept ______asymptotes: x=_____

7(d).

y-intercept: _____

7(e).

x-intercept _____

x-intercept _____

7(f).

y-intercept: _____

7(g).

7(h).

MATH 1050-006 Practice exam 3

Question:	1	2	3	4	5	6	7	Total
Points:	6	18	18	3	8	3	44	100
Score:								

1. 6 points Decide whether the following statements are true or false.

(a)
$$\log_a(\frac{z}{w}) = \log_a(z) + \log_a(w)$$

(b) $(a^x)^y = a^{x+y}$
(c) $\frac{a^x}{a^y} = a^{x-y}$
(d) $a^x a^y = a^{xy}$
(e) $\log_a(zw) = \log_a(z) + \log_a(w)$
(f) $\log_a(z^w) = (\log_a(z))^w$

2. 18 points Calculate.(Write the answer as a single number)

(a)
$$5^{234}5^{-230}25^{-1}$$

(b) $(2^{\frac{9}{13}})^{\frac{13}{3}}$

(c)
$$(\frac{16}{9})^{\frac{3}{2}}$$

- (d) $\log_{\frac{1}{3}}(27)$
- (e) $\log_{10}(10,000)$

(f)
$$\log_3(\frac{1}{\sqrt[6]{9}})$$

- 3. 18 points Solve for x if (a) $e^{-x} = 7$. (No need to simplify the answer.)
 - (b) $\log_{\frac{1}{10}} x = -4.$
 - (c) $5^x + 10 = 15$.

(d)
$$e^{-x^2} = e^{x+5}e^{-11}$$
.

(e) $5e^{-2x+1} = 9$ (No need to simplify the answer.)

- (f) $\log_3(-x) \log_3(-x 1) = 2.$
- 4. 3 points Find a root of $x^4 + x^3 + 7x 9$. (Only ONE root is enough)
- 5. 8 points Completely factor the following polynomials. (Your answers should consist of a product of a real number, monic linear polynomial(s), and monic quadratic polynomial(s) without root)
 (a) -9x 16
 - (b) $x^3 + 2x^2 2x 1$ (hint: factors of the term without x are possible roots)
- 6. 3 points What is the smallest integer that is greater than $\log_{10}(1227)$?
- 7. 44 points Graph the following functions as precisely and clearly as possible, and write down required numbers/coordinates (Might include x-,y-intercept, and/or the vertex. See answer sheet for details.):
 - (a) $f : \mathbb{R} \to \mathbb{R}, f(x) = -4x^5(x-2)^2(x+1)(x^2+9)$

(b)
$$f : \mathbb{R} - \{1, 3\} \to \mathbb{R}, f(x) = \frac{2(x+2)(2x^2+1)}{-5(x-1)(x-3)^2}$$

- (c) $f : \mathbb{R} \to \mathbb{R}, f(x) = e^x$
- (d) $f : \mathbb{R} \to \mathbb{R}, f(x) = \log_e(x)$
- (e) $f : \mathbb{R} \to \mathbb{R}, f(x) = e^x 2$
- (f) $f: (-3, \infty) \to \mathbb{R}, f(x) = \log_{\frac{1}{2}}(x+3)$
- (g) $f: (-2, 1] \to \mathbb{R}, f(x) = 3x$ (Watch out for the domain!)
- (h) $f: [-1,2) \to \mathbb{R}, f(x) = x^3$ (Watch out for the domain!)

Scratch paper