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MATHEMATICAL LIFE

Viktor Solomonovich Ryaben’kii and his school
(on his 90th birthday)

Professor Viktor Solomonovich Ryaben’kii,
doctor of the physical and mathematical sci-
ences and a prominent expert in computational
mathematics, observed his 90th birthday on
20 March 2013.

He was born in Moscow, in the fam-
ily of state employees Solomon Abramovich
Ryaben’kii and Berta Pavlovna Ryaben’kaya.
In 1940 he enrolled in the Faculty of Mechan-
ics and Mathematics of Moscow State Univer-
sity, but World War II interrupted his studies.
After many narrow escapes from death, the
mechanic and driver Ryaben’kii greeted Vic-
tory Day as a sergeant in the Guards, returned
to his dear Faculty, graduated in 1949, and
was admitted for graduate studies. The tal-
ents of the future leading figure of Russian computational mathematics were rec-
ognized and supported by Ivan Georgievich Petrovsky, the prominent mathemati-
cian and administrator of the sciences, who supervised Ryaben’kii’s work first for
his diploma thesis and then for his Ph.D. dissertation. This dissertation, under
the long and— for that time — highly specialized title “Stability of finite-difference
schemes and the application of the method of finite differences to solution of the
Cauchy problem for systems of partial differential equations”, defended at Moscow
State University in 1952, revealed a new name to the computation community, and
over time justified inscribing Ryaben’kii’s name in the list of illustrious founders of
the theory of finite-difference schemes.

It so happened that the young specialist Ryaben’kii began his career at about the
same time as the (then secret) Department of Applied Mathematics was formed, ini-
tially as a division of the Mathematical Institute. Mstislav Vsevoldovich Keldysh,
a brilliant mathematician, an expert in mechanics, and a statesman (who sub-
sequently became President of the Academy of Sciences (1961–1975) at the age
of 50) was its head. The Department of Applied Mathematics was organized
to solve computational problems in nuclear and thermonuclear power generation,
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outer space research, and other areas, and it was expanding by enlisting young
talented researchers. Keldysh hired only people who could likely cope with prob-
lems that were absolutely new for physics and mathematics. Among those who
attracted notice was Ryaben’kii, who then worked at the All-Union Distant Edu-
cation Institute of Railway Engineering. In 1957, on the recommendation of Sergei
Vsevoldovich Yablonskii, he was invited to the Computation Bureau of the Depart-
ment. It was at the Keldysh Institute of Applied Mathematics (the current name
of the Department of Applied Mathematics) that Ryaben’kii eventually developed
into an internationally recognized researcher, who to this day continues his fruitful
scientific investigations.

As a development of his Ph.D. thesis, Ryaben’kii wrote the book [1] in conjunc-
tion with Aleksei Fedorovich Filippov, his colleague of the same age, who subse-
quently became a well-known expert in differential equations. Acknowledged now
as a classical treatise, it was in fact the first book on stability of finite-difference
schemes in the world literature. Computational mathematics— a field as ancient
as mathematics itself— had its second birth at that time. Large-scale calculations
involving ‘finite-difference schemes’ for solving problems related to nuclear projects,
the conquest of space, aircraft construction, and so on, and carried out with elec-
tromechanical desktop calculating machines or first-generation computers led to
a revision and reappraisal of the then established ideas about methods for approx-
imate calculations. Grids in a space could contain dozens or even hundreds of
nodes (now even grids with 1010 points are not unusual), and appropriate theo-
retical bases for computational algorithms had to be developed. A real headache
for people doing calculations was (and still is) the instability of numerical solu-
tions which manifests itself as a rapid non-physical growth of the function being
calculated at a point or simultaneously at a number of points, in dynamical prob-
lems as well as in steady-state problems being solved by relaxation methods. For
this reason the methods and approaches proposed in [1] were most welcome to the
experts in the field. It should be noted that at that time Ryaben’kii (and apparently
also Filippov) was not at all occupied with calculations for practical purposes: as
a ‘pure’ mathematician, he regarded finite-difference schemes as an abstract model
and managed to determine and investigate all the main features of the behaviour
of the model. This is a shining example of the deep innate mathematical intuition
that pervades the whole of Ryaben’kii’s research.

Of course, others had investigated difference equations well before [1]. For
instance, the remarkable 1928 paper [2] by Courant, Friedrichs, and Lewy had
been translated in Uspekhi Matematicheskikh Nauk before the war. But these were
isolated, ‘not fashionable’ publications, partly because practical calculations and
the use of the first computers were classified topics, to which only a very restricted
circle of experts had access. Perhaps this is why the brilliant mathematician Peter
Lax, who in the 1940s and 50s worked occasionally on the Manhattan Project at the
Los Alamos National Laboratory and who also investigated questions on solution of
boundary-value problems using finite-difference approximations, published his the-
ory only in 1956 [3]. One of the main results in [1] and [3], which in the professional
slang easily remembered by students, can be expressed by the phrase “approxima-
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tion and stability yield convergence”, now has several names: Ryaben’kii’s theorem,
the Ryaben’kii–Filippov theorem, Lax’s theorem, and the Lax–Ryaben’kii theorem.

It should be noted that several teams of researchers were formed at that time in
the Institute of Applied Mathematic to investigate a number of different ‘classified’
applied problems often requiring the solution of very similar theoretical questions
subsequently forming the bases of many numerical methods. The communication
of non-classified results and ardent discussions took place at research seminars and
during dissertation defences. This undoubtedly contributed to an atmosphere of
competition, enhanced by the fact that one of the departments of the institute,
where stability of finite-difference schemes was also being investigated, had Alek-
sandr Andreevich Samarskii as its head, a brilliant researcher, a future member
of the Russian Academy of Sciences, an organizer of science, and a prominent
expert in computational mathematics, mathematical physics, and the theory of
mathematical modelling. Ryaben’kii and Samarskii developed a long and trusting
relationship of two experts who valued the opinions of each other, especially when
it came to research results. Perhaps this had something to do with the fact that
both had volunteered for the front as students and, after fate let them survive the
war, had returned to their dear university. Some people recall Ryaben’kii talking
about how, already as well-established academics, they would sometimes inquire,
on meeting at the canteen or in the hallway of the institute, about the sign of the
other’s dp over dt derivative, where p denoted the size of the ‘paunch’, while t was,
of course, the time.

During Ryaben’kii’s first years at the Keldysh Institute he worked closely with
his very talented colleague Sergei Konstantinovich Godunov, a future member of
the Russian Academy of Sciences and a prominent mathematician and expert in
mechanics. They wanted to produce a theoretical exposition and a compilation of
the experience accumulated in several departments of the institute in the numeri-
cal solution of complicated problems in mathematical physics. Their collaboration
resulted in the monograph [4], which also became widely known. The revised and
augmented edition [5] remains even today one of the basic introductions to the
subject. From the standpoint of science, their theory is mainly focused on the fun-
damental concept of stability of computational algorithms. Beginning with con-
cise mathematical definitions of approximation and stability and explaining their
meaning by examples, the authors developed a system of classification, selection,
and methods for constructing finite-difference schemes in typical problems in math-
ematical physics. Furthermore, besides the already ‘traditional’ stability analysis
in the spirit of the Courant–Friedrichs–Lewy test, they presented an analysis of
the asymptotic accumulation of calculation errors in finite-difference evolutionary
schemes, since even then the number of operations in practical calculations was
already so large that these asymptotic properties had a crucial influence on the
applicability of various algorithms. Another distinctive feature was an analysis of
the influence of boundary conditions on the stability of finite-difference schemes.
These difficult and subtle investigations were initially motivated by results of the
remarkable mathematicians Israel Moiseevich Gelfand and Konstantin Ivanovich
Babenko that were presented at a conference in 1956 and that foreshadowed the
future theory. However, a consistent implementation of their ideas turned out to be
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a difficult task. Only after the introduction of some new and unusual notions such as
the ‘spectrum of a family of operators’ (which emerged in discussions with Gelfand,
Babenko, and the outstanding mathematician Èmmanuil Èl’evich Shnol’ [6]) and
then also the ‘kernel of the spectrum of a family of operators’ [5], could Godunov
and Ryaben’kii make their theory harmonious and constructive and obtain results
in closed form.

It should be pointed out that before [5] was written, it took both authors quite
a long period of time (about 7 years) to ‘harmonize’ their points of view. This
was a time of intensive joint work, when they overcame many differences in their
understanding of various experimental tricks that had been used already for several
years in numerous calculations of very diverse physical phenomena. The point was
that models of these phenomena could not always be put in the form of well-posed
mathematical problems. In such cases they had to look for a compromise by sim-
plifying slightly the problems to be solved or by setting aside problems for which
there were not yet concise mathematical formulations. The future development of
concepts sketched at that time could be entirely unexpected. For example, the
concept of the spectrum of a family of difference operators subsequently prompted
the introduction of the concept of the spectral portrait of a matrix [7].1

The question of the accuracy of difference approximations of generalized discon-
tinuous solutions of non-linear hyperbolic equations (for instance, in the calculation
of shock waves in gas dynamics) has always been and still is crucial for the the-
ory of finite-difference schemes. In 1958 Godunov and Ryaben’kii (with the help of
the calculator Natal’ya Mikhailovna Goman’kova) performed a series of numerical
experiments to finally resolve this question. Godunov recalls:

“These experiments produced results which baffled us. My difference scheme
with decay of discontinuities,2 which has first-order accuracy O(h) on smooth solu-
tions, could only ensure an error of order O(

√
h ) in computations of ‘generalized’

solutions with shock waves. We announced this at a scientific conference at Moscow
State University, but at that time we had not had the opportunity to present our
experiments as an article. Nevertheless, the interest in accuracy analysis in this
kind of calculation was increasing anew and intensified in the 1970s, when many
different numerical methods with enhanced accuracy appeared. I knew many of
the creators of these methods, but in my discussions with them I could not find
out just what they meant by ‘order of accuracy’, whereas in our investigations
we followed the example of Sergei L’vovich Sobolev and used the concept of weak
convergence. All these investigations of high-resolution difference schemes and my
meetings with their authors were going at a time when I was occupied with quite
different questions, so I did not delve into the details of their methods. In 1997
I was invited to the University of Michigan, where I gave the lecture ‘Reminiscences
about difference schemes’. When I was preparing it, the Novosibirsk mathematician
Vladimir Viktorovich Ostapenko reproduced, at my request, my joint investigation
with Ryaben’kii applied to the Harten–Lax high-resolution scheme, and thereby
demonstrated that from our point of view it does not deliver higher accuracy. I pre-
sented the text of my lecture as a preprint in Russian and was assured that it would

1See also [8], where similar concepts developed independently are described.
2Russian editor’s note: The classical ‘Godunov scheme’.
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be translated and published in the Journal of Computational Physics. In fact, it
was published two years later, but the text was abridged and the counterexamples
constructed by Ostapenko were omitted.3 In 2011, together with M. Nazar’eva
and Yu. Manuzina, who were preparing their master’s theses under my supervi-
sion, I carried out an analysis of weak convergence in numerical experiments based
on my classical scheme, that is, I reproduced thoroughly my joint investigations
with Ryaben’kii from 1958, taking a significantly larger set of examples. Again
we obtained lower rates of weak convergence. Our results [9] were met without
criticism, although we were prepared for stormy discussions. Recently I have found
some colleagues in Novosibirsk, some of whom are performing numerous very del-
icate calculations using contemporary high-resolution schemes, while others have
been modelling elastoplastic processes together with me. We have been able to
organize a broad discussion of questions relating to accuracy and the organization
of corresponding numerical experiments. It seems that we are now feeling our way
forward through all the complexities in our understanding of the problem, and we
believe we will be able to work out our points of view to the level of a publication.
Hopefully, my remaining life time will be enough for me to be among the authors
of this publication, thus completing the analysis of the problems which Ryaben’kii
and I came across in the late 1950s.”

Ryaben’kii made an interesting contribution to interpolation problems. To inves-
tigate the stability of systems of difference equations with respect to the initial
data, he constructed an algorithm for local polynomial interpolation of a grid func-
tion with prescribed smoothness. Next, on the basis of this algorithm he developed
a method for smooth local interpolation on non-uniform rectangular grids, a method
now known as ‘Ryaben’kii local splines’ and used in quite a few computational algo-
rithms and by theorists.

In completing the description of Ryaben’kii’s research of the late 1950s to early
1960s, we can say that in essence the monographs [1], [4], and [5] have determined
the main directions in the theoretical analysis of finite-difference schemes, a cen-
tral object of computational mathematics and an important tool of contemporary
mathematical modelling. Another interesting feature of the textbook [5] is its bib-
liographical commentary, which explains the origins of many lines of research that
have developed into classical areas of computational mathematics.

The next stage of Ryaben’kii’s research, continuing at present, gave computa-
tional mathematics the new concept of a difference potential together with a whole
gamut of applications of these potentials, from numerical methods for solving
boundary-value problems in mathematical physics to algorithms for active noise
shielding. In what follows, in presenting the main landmarks of the development
of the theory of difference potentials we will, of course, impose reasonable limits on
the formal rigour of our presentation. The interested reader can find all the details
in the papers and monographs cited below.

The story began with Ryaben’kii’s doctoral dissertation “Some questions in the
theory of difference boundary-value problems” [10], which he defended in 1969.
Taking an arbitrary difference operator A with constant coefficients (for example,

3The full English translation of the lecture was published in October 2008 in France, as INRIA
preprint no. 6666 “Reminiscences about numerical schemes”.
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from an approximation of an elliptic differential operator) as a point of depar-
ture, Ryaben’kii introduced the notion of a (multilayer) grid boundary γ of a grid
domain M and constructed certain objects Puγ which were entirely new for dif-
ference problems, namely, convolution sums of the finite-difference fundamental
solution for the operator A with grid functions uγ considered on γ

(
here and below

we use a subscript to denote the trace of a function on a set S, that is, uS ≡ u
∣∣
S

)
.

The formulae which he introduced turned out to be finite-difference analogues of
Cauchy and Cauchy-type integrals, because they a) produce all the solutions of the
homogeneous equation AuM = 0M , where M = M ∪ γ, and b) define the difference
boundary projections Pγ obtained by restricting P to the subspace of functions with
support on γ: Pγuγ ≡ (Puγ)γ . Thus, the shorthand expression Pγuγ − uγ = 0,
which he called the inner boundary conditions, is a complete difference analogue
of the Sokhotskii–Plemelj integral relation (recall that the latter distinguishes the
class of boundary functions that can be extended to the whole domain as ana-
lytic functions). Thanks to this relation he could in an equivalent way reduce
a finite-difference boundary-value problem for A formulated in the domain M to
grid equations on the boundary γ:{

Pγuγ − uγ = ψ,

Buγ = ϕ,
(1)

where the second equation corresponds to the boundary conditions in the original
difference boundary-value problem (for instance, to the Dirichlet conditions).

It will be no exaggeration to say that the operator P , which was subsequently
called the difference potential operator and was generalized to the case of vari-
able coefficients and evolution problems, became the central object of theoreti-
cal and applied investigations for Ryaben’kii and his school. These investigations
involved questions of the algebraic formalism of the theory of difference potentials
and classical potentials, the analysis of approximative properties of P , approaches
to the economical computation of Puγ , methods for the efficient solution of var-
ious boundary-value problems in mathematical physics using a reduction of the
form (1), and the use of ideas related to difference potentials in problems of con-
structing non-reflecting boundary conditions, active noise reduction, and many oth-
ers. It should be noted that Ryaben’kii usually begins his lectures on the method
of difference potentials as follows:

“The difference potential has its prototype in a Cauchy-type integral

f(z) =
1

2πi

∮
Γ

ρΓ(ζ)
ζ − z

dζ, z /∈ Γ,

defined on the space of piecewise smooth complex-valued functions with a jump on
a closed contour Γ, which partitions the complex plane into a bounded domain
Ω+ and its complement. This integral can be treated as the potential of the
Cauchy–Riemann differential operator ∂/∂z, where the function ρΓ(ζ), ζ ∈ Γ, plays
the part of the density of the potential. This potential (in contrast to single- and
double-layer potentials for the Laplace, Helmholtz, Lamé, Stokes, Maxwell,
and other operators) has a unique property: its construction involves the boundary
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projections P+
Γ and P−

Γ defined by

P+
Γ ρΓ(ζ) :=

1
2
ρΓ(ζ) +

1
2πi

∮
Γ

ρΓ(η)
ζ − η

dη,

P−
Γ ρΓ(ζ) :=

1
2
ρΓ(ζ)− 1

2πi

∮
Γ

ρΓ(η)
ζ − η

dη.

The singular integrals are understood in the principal value sense.
Let f(z) be a piecewise continuous analytic function tending to zero as z → ∞

and having a jump on Γ. Also, let f+
Γ (ζ) and f−Γ (ζ) be the limits (traces) of f(z)

as z approaches a point ζ on Γ from inside Ω+ and from outside Ω+, respectively.
Then it is known that given the sum fΓ = f+

Γ + f−Γ , the projections P+
Γ and P−

Γ

enable us to find each term from the formulae f+
Γ = P+

Γ fΓ and f−Γ = P−
Γ fΓ.

The potentials of general linear difference operators,4 which are projections in
the space of densities on the grid boundary, combine the unique properties of the
Cauchy-type integral mentioned above with the universal applicability and algo-
rithmicity of finite-difference schemes.

This is the cornerstone of most of the new opportunities opened by the method
of difference potentials.”

We return to the time when difference potentials were introduced. Ryaben’kii
clearly realized what a conceptually rich and interesting new direction in computa-
tional mathematics had been opened for the investigation of the new objects, and
he began attracting students of the Moscow Institute for Physics and Technology
to his research. The first of them was A. Ya. Belyankov (diploma thesis of 1970 at
the institute), who treated algebraic aspects of the construction of the operator P
in his diploma thesis and subsequent papers, including his Ph.D. dissertation [11].
As a result, in conjunction with Ryaben’kii he constructed a difference analogue
of the machinery of singular integral equations in the theory of finite-difference
boundary-value problems. In particular, in [11] he gave an expression for difference
potentials in the form

PuM := uM −
(
F (AuM )M

)
M
, (2)

where F is the difference Green operator for A in some larger domain M0 ⊃ M ,
that is, FAuM0 ≡ uM0 . This form has proved to be very convenient for the further
development of the theory of difference potentials. One of its main properties is
the fact that the result depends only on the values of the function uM on the set
γ ⊂M .

In Fig. 1 is an example of M , γ, and M0 for a difference two-dimensional
second-order elliptic operator A with the usual cross-shaped five-point stencil.

The theory of approximative properties of difference potentials under refinement
of the mesh, sketched already in [10], was significantly developed by Ryaben’kii’s
next student, Aleksandr Anatol’evich Reznik (diploma thesis of 1979 at the insti-
tute).5 Using the apparatus of generalized functions, he obtained the first results

4Russian editor’s note: Ryaben’kii potentials.
5One of Ryaben’kii’s most talented students, he sadly passed away while still young in 1995.
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Figure 1. The domains M (grid points inside the contour) and M0 (grid
square) and the boundary γ (bullets) for an operator A with a five-point
stencil; M = M ∪ γ.

on approximation of the potentials of general elliptic operators in the norms of
Hölder and Sobolev spaces [12], [13]. His approach to the approximation of ellip-
tic surface potentials was based on several ideas. The first idea was Ryaben’kii’s
‘supplementary idea’, announced in 1976 at a conference dedicated to the 75th
birthday of Academician Petrovsky (see [5], Supplement, § 10), or more precisely,
the part of that idea relating to the extension of the Cauchy data to the grid bound-
ary. For definiteness let us consider a second-order elliptic operator L in a simply
connected closed domain Ω with sufficiently smooth boundary Γ (for example, Γ
can be the contour in Fig. 1). The extension algorithm works as follows: for a
pair of functions {ν, ∂ν/∂n} that is the Cauchy data on Γ for some function ν,
Taylor’s formula is used to construct a function uγ at points in the grid boundary
γ corresponding to Γ:

ua := ν(b) + r
∂ν

∂n
(b), (3)

where a ∈ γ is the current point in γ, b ∈ Γ is the base of the normal dropped
from a to Γ, and r is the length of the normal with the appropriate sign (depending
on whether a is an exterior or interior point of Ω). It should be noted that with
this definition of uγ the meaning of multilayeredness of the boundary γ becomes
intuitively clear: using functions on γ we can keep information about the entire
vector of Cauchy data on Γ. Next, he used the idea of a unified representation for
continuous and difference potentials in the form (2). For example, for the simple-
and double-layer potentials

wΩ = 0.5ρ0 −
∫

Γ

(
Gρ1 −

∂G

∂n
ρ0

)
dΓ, (4)
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with densities ρ1 and ρ0 and the Green’s function G, the Green’s identity gives the
representation

wΩ = uΩ −
(
G ∗ (LuΩ)Ω

)
Ω
, (5)

where u is an arbitrary function with the Cauchy data {ρ0, ρ1} and Ω = Ω ∪ Γ.
Finally, the third idea was that the operation of convolution G ∗ f can be approxi-
mated by solving the auxiliary difference problem

Au = fM0 ,

u ∈ U0

(6)

in the larger domain M0, where U0 is the subspace of functions on M0 that satisfy
a certain homogeneous boundary condition.

Remark 1. The subspace U0 determines a particular Green’s function in the set of
all possible options: for instance, the homogeneous Dirichlet boundary condition
corresponds to the Green’s function of the Dirichlet problem in M0, while we shall
see below that more subtle conditions can correspond to the Green’s function of
the free space, the fundamental solution.

In fact, now we see how we can construct an algorithm approximating the poten-
tials (4) at points in M : first we use the extension formula (3) to construct the
function uγ on γ for the Cauchy data {ρ0, ρ1}, and then we use (2), shifting the main
difficulties to the process for solving the problem (6); the function uM is extended
by zero outside γ. Thus, we miraculously avoid the need to know the explicit form
of the Green’s function G and to calculate the convolution with singular kernels
in (4). In this way, by solving (6) using, say, the multigrid method due to Radii
Petrovich Fedorenko [14] (who was a great friend of Ryaben’kii and his neighbour
both in their apartment house and at work: their desks were in the same office)
or another ‘fast’ numerical method, we can approximate the potentials of arbitrary
elliptic operators with variable coefficients with the same degree of numerical effi-
ciency. If in the above algorithm we confine ourselves to the second part, that
is, to the formula (2), then we obtain just an algorithm for calculating difference
potentials for an arbitrary grid function γ without knowing F .6

Remark 2. The approximative properties of difference potentials agree with the
order of accuracy of the extension of the Cauchy data to γ. Clearly, the extension (3)
is the simplest (zero-order) approximation of the solution of the Cauchy problem
in a small neighbourhood of Γ for the equation Lν = 0. The approximations next in
order are obtained by adding new terms of the Taylor series, which are recursively
calculated from the tangential derivatives of the Cauchy data using the conditions
∂k

∂nk
(Lν) = 0, k = 0, 1, 2, . . . . The parameter k determines the indices of the

Hölder and Sobolev spaces in which the estimates of approximations are computed.
6This construction has become a classical component of the theory of difference potentials.

However, for instance, I. L. Sofronov recalls how in his student years, after managing to immerse
himself deeply in the theory of inner boundary conditions and understand all the intricacies of
the problem of finding difference fundamental solutions, he heard from the ‘chief’ that difference
potentials could now be calculated without producing these solutions. This news made a very
strong impression on him, and he almost had doubts about whether it could be true.
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The importance of the above scheme for computing difference potentials and the
importance of the method for approximating classical potentials can undoubtedly be
compared with the importance of the very idea of difference potentials. It was due to
the joint efforts of Ryaben’kii himself and his first students Belyankov and Reznik
to solve these problems that difference potentials found their way into common
practice in computations. It is a significant feature of these constructions that
continuous potentials can be approximated algorithmically in a rather natural and
routine way, and without having to use Green’s functions or to calculate singular
surface integrals.

The algebraic aspect of the construction of difference potentials is beautiful
and very attractive. For more than 40 years since he thought of the operator P ,
Pyaben’kii has been repeatedly returning to this subject. He introduced the con-
cept of the clear trace of a function uγ . The clear trace allows one to control the
parametrization of the set of difference potentials Puγ by means of the kernel of P
(recall that P is a projection, whose kernel has dimension equal approximately to
half the number of points in γ). His investigations in the early 1980s resulted in
the construction of and the theory of difference potentials for general linear systems
of difference equations on abstract grids. On the other hand, it turned out that
this algebraic formalism could be carried over also to linear differential operators
and boundary-value problems. Thus, the ‘finite-difference’ theory prompted the
development of a similar ‘continuous’ theory (although Ryaben’kii was of course
thinking about the two formalisms at the same time: the first publications on both
subjects, [15] and [16], appeared in the same year 1983). This led to the creation of
a general construction of surface potentials and projections for differential operators
on the basis of the definition (5). It was presented in developed form in [17] (see
also [18]) and covered the Plemelj–Sokhotskii equations, Calderón–Seeley boundary
potentials (projections), classical potentials, and Green’s formulae as special cases.
Some time later M. I. Lazarev, Ryaben’kii’s colleague and close friend, focused on
the algebraic aspects of the notion of a clear trace, the notion of a potential with
density in the space of clear traces, and the notion of boundary equations with pro-
jections, as they were considered in [17]. He defined a partial ordering in the set of
all possible constructions of clear traces and defined the minimal clear trace [19].
Recently, Ryaben’kii returned to the algebra of difference potentials and proposed
constructions enabling a parametrization of the whole family of difference poten-
tials. These results are a further step along the road to formalizing the selection of
a difference potential which is adequate to the aims of its use.

Now we look at some areas where the theory of difference potentials is applied.

1) Since they were introduced, the use of boundary potentials has been focused
on boundary-value problems of mathematical physics. For many years Ryaben’kii
worked together with his students and colleagues on the development of sufficiently
‘universal’ techniques which would enable them to get fast difference algorithms on
rectangular grids for curvilinear domains, based on the reduction (1). In the early
1980s they finally developed such a scheme, tested it in several problems [13], [20],
and published it in [21]. We will describe the main components and features of this
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scheme using the example of the boundary-value problemLu = 0 in Ω,

l

(
u,
∂u

∂n

)
= f on Γ,

(7)

where the operator L and the domain Ω with curvilinear boundary Γ are as intro-
duced above, and l can be any boundary-value operator, provided that the prob-
lem (7) is well posed. We start by constructing the difference potential. To do
this we put Ω in a parallelepiped Ω0 and introduce a uniform rectangular grid in
Ω0. This is the domain M0 on which we approximate L by an operator A. Using
the formalism of difference potentials, we define the grid boundary γ and then the
operator P by the formula (2). Further, we represent the unknown functions u
and ∂u/∂n by their values at the points of some set (grid) S on Γ; let d be the
vector of these values. Interpolating d to u and ∂u/∂n on the whole of Γ by splines,
we use (3) to construct an operator Π extending the Cauchy data from Γ to γ:
uγ = Πd (see Remark 2 concerning the accuracy). Finally, introducing Euclidean
norms Uγ and US on γ and S in terms of the sums of squares of the values of the
functions and, if necessary, the sums of the squares of their first difference quo-
tients, we state the discrete problem of minimizing the sum of two discrepancies by
choosing an appropriate d:

∥Πd− PΠd∥2Uγ
+

∥∥l∣∣
S
d− fS

∥∥2

US
→ min

d
. (8)

The first term corresponds to the inner boundary conditions on γ (see (1)), and
the second approximates the boundary conditions on Γ. Clearly, the problem (8)
corresponds to an Euler–Lagrange equation, a system of linear equations with
a self-adjoint matrix. Solving this system using the conjugate gradient method,
we find the required values of u and ∂u/∂n on S.

Let us list the main properties of the above algorithm.
(i) It is indeed universal with respect to the boundary-value operator l: we need

not invent separate methods each time for approximation on a rectangular grid for
different types of l, separate methods to include these operators in the difference
scheme in the interior of the domain or for an efficient solution of the resulting
system of equations. For (8) the operator l is approximated at points in the original
curvilinear boundary.

(ii) There is no need to adapt the rectangular grid to the curvilinear boundary,
because the relation between functions on γ and S is realized in a unified way,
by the constructive algorithm for extending the Cauchy data that was implemented
in the construction of the operator Π.

(iii) The limiting problem (8) obtained by letting the step size of the grids in M0

and S tend to zero is solvable if and only if the original problem (7) is. This is impor-
tant, for instance, in the case of the Helmholtz equation. It is known that using
the method of boundary integral equations to reduce boundary-value problems to
equations on the boundary for the Helmholtz equation can lead to the situation
when the resulting operator of the boundary integral equations has no inverse for
some frequencies (so-called inner resonances), although the original boundary-value
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problem is well solvable. In the case of equation (8), which, like boundary integral
equations, reduces the original problem to equations on the boundary, there is no
such problem: as already noted, the difference potential (2) is an approximation
of the Calderón–Seeley potential, so (8) can keep the solvability properties of the
original problem.

(iv) The behaviour of the condition number of the Euler–Lagrange equation
for (8) when the step size of the grid decreases depends essentially on the norms
Uγ and US . The theory of elliptic boundary-value problems suggests that we must
take the derivatives into account in order to have ‘correct’ norms. For such a choice
of norms we avoid the situation when the condition number, and therefore also the
rate of convergence of the iterative method, depends on the step size.

(v) In the main, the time consumption and memory usage at each iteration are
determined by the resources used for solving (6) in M0, that is, they compare,
for instance, to those for the multigrid method (if we do not use some even more
efficient method).

Remark 3. Property (i) is directly and fairly deeply connected with the fact that
the boundary γ of the grid domain is multilayered. In analyzing the strong and
weak aspects of the above algorithm, Sofronov proposed another approach [22] to
the solution of regular elliptic problems on rectangular grids in curvilinear domains
using difference potentials. In it, the original elliptic problem is first transformed
into an equation with a zero-order self-adjoint pseudodifferential operator acting
in a Hilbert space which is a product of weighted Sobolev spaces. Then this oper-
ator is approximated on the rectangular grid, where the unknown functions are
taken at points in M ∪ γ; here difference potentials are used as preconditioners,
which ensures the zero order of the corresponding self-adjoint discrete operator in
a finite-dimensional Hilbert space.

2) The choice of the subspace U0 onM0 for the calculation of the difference poten-
tial (2) is a significant degree of freedom, which must be used wisely. When we dis-
cuss inner problems (Ω is bounded), the main criterion is a fast and reliable solution
of (6); so, as we have already indicated, U0 can, for instance, correspond to homo-
geneous Dirichlet conditions. However, for solving outer problems we need to con-
struct U0 so as to have the correct asymptotic behaviour of the difference potential
at infinity. In 1982 Ryaben’kii interested his next student Sofronov (diploma thesis
of 1981 at the Moscow Institute for Physics and Technology) in these problems. As
a result, they found an appropriate difference potential and constructed an algo-
rithm for solving outer problems for the Helmholtz equation [20], [23], based on
Ryaben’kii’s idea of using for the definition of U0 the so-called partial conditions
which are obtained via Hankel functions from the well-known representations of the
general solution of the Helmholtz equation in a far field as Fourier series in spherical
harmonics. In these constructions the domain Ω0 is a sphere or a spherical shell, and
the problem is stated in spherical coordinates.7 The resulting difference potential
approximates the solutions of the Helmholtz equation with Sommerfeld conditions

7We remark that conditions of this type were later significantly developed by many authors
and came to be called DtN (Dirichlet-to-Neumann) maps in the theory of non-reflecting artificial
boundary conditions.
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at infinity with the required accuracy, and its calculation is algorithmically just as
simple as in the case of U0 determined by the Dirichlet condition.

With the goal of extending these preliminary results on the construction of dif-
ference potentials for outer problems to the broadest possible classes of problems,
Ryaben’kii subsequently developed the entirely original idea of constructing dif-
ference operators for non-reflecting artificial boundary conditions for steady-state
problems on the basis of difference potentials. It is actually based on a well-known
fact in the theory of difference potentials: if γ is the (open) outer boundary of the
grid computational domain, then the equation (Puγ)γ − uγ = 0 with the oper-
ator P constructed from the difference fundamental solution will provide one of
the possible forms for expressing the required non-reflecting artificial boundary
conditions. These non-local relations for uγ replace in an equivalent way the homo-
geneous equation for the original difference operator on the discarded infinite grid
domain (that is, such non-reflecting artificial boundary conditions are exact in the
finite-difference sense). Among important components of this circle of ideas we can
name first of all an approach to an economical calculation of the vectors (Puγ)γ

and, second, expressions for the resulting non-reflecting artificial boundary con-
ditions which are more convenient for calculations. Ryaben’kii approached the
realization of these ideas at the end of the 1980s, in joint papers with his new
generation of students, S.V. Tsynkov (diploma thesis of 1989 at the Moscow Insti-
tute for Physics and Technology), M. N. Mishkov (diploma thesis of 1991 at the
same institute), and V. A. Torgashev (diploma thesis of 1993 at the same insti-
tute). In [24]–[30] they developed techniques for the approximate calculation of the
vectors Puγ with prescribed behaviour at infinity for various equations of mathe-
matical physics. These techniques use the principle of limiting absorption by adding
terms containing a small parameter to the original equations in order to single out
the required asymptotic terms and reduce the size of M0. As regards the expres-
sions for non-reflecting artificial boundary conditions which can conveniently be
used in algorithms solving the equations inside the computational domain, they
can be obtained from the condition (Puγ)γ−uγ = 0, by partitioning the multilayer
boundary γ into an outer layer and an inner layer and by constructing an operator
interpolating the values of the solution on the outer layer from its values on the
inner layer.

It should be noted that we need significant resources to construct the approx-
imations required in the equation (Puγ)γ − uγ = 0. We can spare the resources
needed for the calculation and use of the difference potentials if we find a conve-
nient parametrization of the space of densities which will enable us to eliminate
the kernel. D. S. Kamenetskii (diploma thesis of 1989 at the Moscow Institute for
Physics and Technology), another student of Ryaben’kii, considered questions of
a single-valued parametrization of the solution set of the general homogeneous dif-
ference equation by means of difference potentials with densities of various forms,
and he investigated methods for constructing so-called independent inner boundary
conditions and generalized Poincaré–Steklov difference operators [31], [32]. Also,
Tsynkov’s results in [33] are relevant here: there he used an example of a two-layer
boundary γ (see Fig. 1) to express the densities of difference potentials which are
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analogous to the densities of the single- and double-layer potentials for second-order
differential operators.

It is an important argument for the use of operators of non-reflecting artificial
boundary conditions constructed on the basis of difference potentials that they are
usually meant for repeated computations in problems of the same type. These com-
putations must reflect variations of the parameters (for example, the variation in the
geometry of a body in diffraction or flow problems, the set of different right-hand
sides, and so on) which affect the equations in the interior of the computational
domain, but do not require new computations of the operators of non-reflecting
artificial boundary conditions. Therefore, only the computational resources nec-
essary for the use of the operators already constructed are important, and these
are ‘compensated with surplus’ by the high accuracy of the non-reflecting artifi-
cial boundary conditions and the sharp reduction in the size of the computational
domain (in comparison to the usually asymptotic boundary conditions at infinity).

An instructive example is given by Tsynkov’s results in [34]–[39], where in prob-
lems of steady flows he used the approach proposed by himself and Ryaben’kii for
constructing non-reflecting artificial boundary conditions on the basis of difference
potentials. In designing the required non-reflecting artificial boundary conditions
and realizing them using the codes FLOMG and TLNS3D developed by NASA for
scientific and industrial calculations, he verified their efficiency in many test cal-
culations for variations of the geometry of the objects placed in the flow (profiles,
wings, and oblong bodies with jet propulsion), the Mach numbers of the incident
flow, the size of the computational domain, the mesh of the grid, and so on. The
two-dimensional code FLOMG is used for the integration of both the complete
Navier–Stokes system and the system of equations in the thin layer approximation.
The code TLNS3D was designed specifically for the thin layer equations. Both are
based on finite-difference schemes with symmetric differences in the space variables
and with artificial first- and third-order dissipation. The standard method for stat-
ing the far field conditions for both codes is to use certain local conditions on the
outer boundary. This method is based on the assumption that the flow is ‘almost
one-dimensional’ far away from the body, and also on a corresponding analysis of
the input and output characteristics arising when time is introduced (a stationary
solution is interpreted as a result of establishment). Tsynkov’s experiments showed
that the new non-reflecting artificial boundary conditions on the basis of difference
potentials not only always reduce (up to a factor of three) the time required for
calculations of the same accuracy, but also improve the stability of the calculations
and produce stationary solutions in some cases when the calculations using the
original codes have produced non-physical oscillations.

3) So far we have focused on elliptic equations of mathematical physics, although
the theory of difference potentials also encompasses non-stationary problems. In
the very beginning of the 1990s Ryaben’kii formulated the main constructions of
non-reflecting artificial boundary conditions on the basis of difference potentials
for explicit difference schemes [40] and suggested that Sofronov look at the case of
a wave equation with constant coefficients in order to concretize the corresponding
constructions. The first results of calculations of a difference fundamental solu-
tion using a standard second-order central-difference scheme were baffling: strong
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oscillations, the absence of grid convergence in a neighbourhood of the front, and
so on. To sort all this out, it was necessary to turn to analytic methods, which
quite unexpectedly resulted in very different solutions of the problem, namely, to
the development of analytic and quasi-analytic transparent boundary conditions.

The transparent boundary conditions proposed by Sofronov [41], [42] for the
wave equation have the following form on the sphere and the circle (d = 3, 2):

∂u

∂t
+
∂u

∂r
+ 0.5(d− 1)

u

r
−Q−1{B∗

k}Qu = 0,

where Q and Q−1 are the operators of the direct and inverse Fourier transformation
in the spherical or trigonometric basis, and {B∗

k} denotes a diagonal matrix of
time-convolution operators that acts on the vector of Fourier coefficients (k is the
index of a component). The convolution kernels Bk(t) are known and in practical
applications are approximated by sums of exponentials:

Bk(t) ≈
Lk∑
l=1

al,ke
bl,kt, Re bl,k 6 0.

In discretizing transparent boundary conditions this approach enables one to achieve
an arbitrary accuracy by taking the appropriate number of Fourier harmonics and
the corresponding approximations of Bk(t). On the other hand, it is economical
in what concerns the memory resources and the number of operations, because
convolution with exponentials is carried out using recurrence formulae. Transparent
boundary conditions for some other equations were elaborated in [43]–[46] and
other papers. For anisotropic and inhomogeneous media quasi-analytic transparent
boundary conditions were developed in [47], [48], where the corresponding matrix
{B∗

k,l} is full and its matrix elements are found numerically. In addition, analytic
truncated transparent boundary conditions have been proposed [49] in which there
is no operator of time convolution.

Now we return to the problem of constructing a difference fundamental solution
for a wave equation with constant coefficients. It could nevertheless be solved
thanks to V. I. Turchaninov’s investigations [50]. It turned out that once we have
replaced the point-mass delta function on the right-hand side of the wave equation
by some infinitely smooth ‘cap’ with compact support that simulates the delta
function, the difference solution starts tending to zero outside the front of the
fundamental solution, and at a much higher rate than prescribed by the second
order of the difference scheme. In this way it became possible to use the presence
of lacunas, something inherent to solutions of the wave equation, and to construct
non-reflecting artificial boundary conditions on the outer open boundary of the
computational domain which are virtually exact in the finite-difference sense, using
fixed memory resources and a fixed number of operations in the computation at
each time step [51]–[54]. These resources are proportional to the number of grid
points in the computational domain, because the auxiliary domain introduced for
the ‘accommodation’ of the non-reflecting artificial boundary conditions has a fixed
diameter (approximately three times as big as the original computational domain).

Subsequently, this approach was significantly developed for various applications
by Tsynkov and his colleagues [55]–[58] and was generalized to quasi-lacunas of
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Maxwell’s equations, when the solution behind the wave tail is stationary, but not
necessarily zero [59], [60].

4) Ryaben’kii has always been very attentive to the efficiency of calculations.
When multiprocessor systems appeared, the degree of parallelism of the computa-
tions became a most important characteristic of algorithms. The use of rectangular
grids and finite differences in the original formulations of the theory of difference
potentials makes possible a very efficient organization of high-performance com-
puting. On the other hand, the standard approach to parallelism is to partition
the physical and the computational domains. Ryaben’kii moved in this direction
at the end of the 1990s, together with his student Y. Yu. Epshteyn and Turchani-
nov. Their first results confirmed the efficiency of their prospective approach to the
construction of an algorithm for solving the problem using the method of differ-
ence potentials in a composite domain. They proposed algorithms [61], [62] which
construct separate, not harmonized (rectangular) grids in different subdomains.
The boundary and interface conditions are approximated directly on the physical
boundaries themselves with the use of the operator described above which connects
the Cauchy data with functions on the grid boundaries of the subdomains.

Another source of economy of computer memory and number of operations is
improvement of the order of approximation of the difference scheme operators, and
therefore also of the difference potential operators. In developing the method of
difference potentials in this direction, Tsynkov and his colleagues have designed effi-
cient algorithms for high-order approximations of solutions of the Helmholtz equa-
tion [63]–[66] on the basis of the compact schemes of the fourth order of accuracy
previously proposed [67], [68]. We remark that these compact schemes for differ-
ence potentials are attractive also because they keep the boundary γ two-layered,
in contrast to the four-layer grid boundary γ used for central-difference schemes
of the fourth order. (However, Epshteyn and coauthors [69], [70] showed that in
the design of algorithms with difference potentials for composite domains which are
based on such central-difference schemes the additional layers of γ do not introduce
fundamental difficulties.)

5) In the early 1990s Aleksei Valerievich Zabrodin, the head of a department
at the Institute of Applied Mathematics and a close friend of Ryaben’kii who was
one of the first enthusiasts in the development of Russian multiprocessor computer
systems and parallel programming techniques, suggested that Ryaben’kii look at the
problem of active shielding of physical fields. Ryaben’kii was immediately intrigued
by this subject: he intuitively felt that difference potentials could be of great use
there. In fact, the trace of a function on a grid boundary carries all the necessary
and sufficient information for the recovery in the shielded region of just the field
generated by the outside sources (and therefore the theory of difference potentials
enables us to simulate this field and then to subtract it). Of course, in creating his
algorithm Ryaben’kii’s main care was the practical realization of the mathematical
model by means of available physical gadgets and measurements. For instance,
approaches involving the necessity of using information about the properties of the
medium in the protected regions were immediately abandoned. Several months were
spent obtaining the required formulae, and they turned out to be so simple that it
was difficult to believe in the prospects they opened. Ryaben’kii published these
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first theoretical results as two short notes [71] and [72]. They marked the beginning
of a new direction in the well-known problem of active shielding of a given region of
space from outside sources of noise, and they contained the main construction in
the use of Cauchy-type difference potentials for these purposes.

For definiteness let us consider acoustic fields. By a ‘sound’ we will mean a useful
field in the shielded region, and by a ‘noise’ we will mean a parasitic field which
penetrates from an adjacent region across the boundary between the regions (one
example is a room with a window looking out at a noisy street). We recall that
the mathematical aspect of the problem of constructing an active screening sys-
tem (a problem which has been studied for more than 50 years) consists mainly
in describing a) a system of additional sound sources located on the boundary
of the shielded region which dampen the noise penetrating from the open part of
the common boundary with the outside region, that is, which protect silence in the
given subregion, and b) a control of this system. The new problem considered by
Ryaben’kii consisted in protecting from outside noise not silence but an arbitrary
useful sound in the given subdomain.

We have already seen that the apparatus of difference potentials uses certain
special grid sets. Let us introduce some notation: M is the shielded grid domain
(the room), M− is the adjacent grid domain (the street), and γ is the multilayer grid
interface between these regions (the window opening). We assume that the acoustic
field is described by finite-difference equations in these domains. The formulae for
active control constructed in [71] and [72] on the basis of Cauchy-type difference
potentials, applied to a time-periodic acoustic field, have some advantages over all
the previously known mathematical models of active shielding systems, because
they possess a combination of the following properties.

1. In M not only is the noise cancelled, but also the sound produced in this
region is preserved. In other words, the acoustic field in M becomes the same as
it is when the noise sources in M− are shut off. Moreover, for the sound sources
in M even the reflections (echoes) from obstacles in M− transmitted through γ are
preserved.

2. The proposed algorithm of active shielding operates with the values of the
total acoustic field at points in γ that is produced by sources both in M− and in M .
Of course, this simplifies signal measuring and processing.

3. For use of the algorithm it is necessary to know the properties of the acoustic
medium only in the immediate vicinity of the grid boundary γ. In particular,
the shape of the composite region and the conditions on its outer boundary are
irrelevant, and we do not need to know the location and strength of the sound and
noise sources, nor the state of the medium away from the grid boundary.

The periodic dependence of the field on time treated by the theory in [71] and [72]
can have a simple harmonic form (the Helmholtz equation) or can be produced by
some repeating process. In the latter case we can proceed as follows: store in
memory the values of the field at the points in γ during the first run of the process,
calculate the required control, and then use it at each repetition.

The universal results of the approach proposed in the pioneering paper [71]
have served as the basis for numerous investigations in this direction carried out by
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Ryaben’kii and his colleagues R. I. Veitsman, E. V. Zinov’ev, Tsynkov, S. V. Utyuzh-
nikov, and their students and colleagues, who have developed and used them for
diverse applications (see, for instance, [73]–[83]).

In 2005 Ryaben’kii visited the University of Manchester at the invitation of
Utyuzhnikov. As a result of his lectures at seminars and many conversations, he
and Utyuzhnikov decided to build a laboratory facility for active noise control on the
basis of the universal algorithm in [71], specialized for the case of one-dimensional
acoustic difference equations. Experiments at the facility in Manchester constructed
under Utyuzhnikov’s leadership [84] have validated the theoretical predictions in [71].

For all the merits of active screening systems based on [71], one cannot use
this algorithm to control stochastic acoustic processes in real time, that is, in the
situation when at the current moment of time t = T one does not have information
about the variable shape of the region and the sources of noise and sound for
t > T . We can also add here the following restrictions (which we formulate for the
‘room-window-street’ situation): a) the microphones and sound emitters must be
placed in the ‘window opening’, that is, close to γ; b) the required control algorithm
must use for t = T only the information about the total acoustic field on the time
interval 0 6 t 6 T .

Many years of speculations on this and similar problems of real-time control of
stochastic processes led Ryaben’kii to the following conclusions.

1. The protected region M cannot be completely shielded from the noise from
M−, because the required control is underdetermined in view of the restrictions on
the available information in the vicinity of γ.

2. Nevertheless, it is possible to reduce the noise inM by any prescribed factor n.
The corresponding theory and algorithm were presented in [85]–[89]. The gist of

this algorithm is that the information not available for control about the acoustic
conditions away from the window that change with time (moving objects, tem-
perature, rain, snow, sound sources, and so on) arrives to the window opening as
weak noise (for large n) which is preserved because of the abandonment of the
goal of total noise cancellation. In essence, this implements the idea of location
by means of weak noise, which is detected by microphones and used for the timely
production of the current control signal.

The next step in the development of the prospective laboratory facility for
real-time active reduction of stochastic noise was a mathematical model developed
by Ryaben’kii and Turchaninov that realized the above algorithm as computer
software. In this model the acoustic process in a continuous medium is calculated
using a stable finite-difference scheme which approximates the acoustic equations
on a sufficiently fine grid. The first numerical experiments validated the theoretical
predictions [85]–[89] and established some new facts [90].

It should be noted that there is a very natural connection between the discrete
and continuous formulations of the problem of active shielding, due to the similar
algebraic formalisms of the potentials in (2) and (5) and to the approximative
properties of difference potentials considered above.

Completing our brief description of applications of difference potentials with
this striking example, we are quite sure that the method of difference potentials
developed by Ryaben’kii more than 45 years ago will produce many other interesting
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and surprising solutions in various important areas of numerical mathematics and
engineering in the future.

Ryaben’kii has a rare ability to inspire students and younger colleagues with
his ideas by fascinating them with accounts of the possibilities and unsolved prob-
lems involving difference potentials. He has no regrets about time spent talking
with them, and he generously shares his extremely rich scientific experience and
life experience with them. He addresses the question of the future line of research
of a young colleague with the utmost sense of responsibility and forms around him-
self an inimitable atmosphere of enthusiasm and creativity which enables future
researchers to fully realize their capabilities. For Ryaben’kii and his late wife
Natal’ya Petrovna Ryaben’kaya (she passed away on 15 January 2014), who lived
for their common interests, each student became very close to them. This is one
reason why Ryaben’kii has not had as many students as he could have had (another
reason was that in the times of ‘perestroika’ many of his talented students simply
abandoned science). About ten of his students defended Ph.D. dissertations, and
two of them were subsequently awarded D.Sc. degrees.

The school of research founded by Ryaben’kii currently consists of his students
and students of his students, working in Russia and abroad, in Great Britain,
Germany, Israel, and the USA. The ideas and methods that he has put forward
have been developed significantly in theoretical and applied research studies at
universities, government laboratories (NASA, DOD), and research centres of major
industrial corporations (Rosneft, Schlumberger, ALSTROM, EDF).

Of course, Ryaben’kii does not work with students any more, nor does he teach,
but rather expends his strengths only concerning those of his ideas where his expe-
rience and knowledge are needed for accomplishing specific results. Although he
began teaching very early, after completing his postgraduate studies in the 1950s, his
talents as a teacher and lecturer revealed themselves only later, during the 30 years
of his work in the Department of Numerical Mathematics at the Moscow Institute
for Physics and Technology. He created a completely original lecture course on the
foundations and methods of computational mathematics, many chapters in which
are unique. His work on these lectures and his monograph [4] led to the issue
of the coursebook [5], which has now become a standard textbook in the corre-
sponding branch of computational mathematics and has been translated into many
languages. The coursebooks [91] and [92] (joint with Tsynkov) sum up the years
of his teaching experience. His long involvement in seminars is also reflected in
the book of practical exercises on basic computational mathematics, including PC
software [93], written by the staff and students of Ryaben’kii’s department under
his supervision. The theory of difference potentials was presented in the mono-
graphs [18] and [94], which also contain many results (revised in each new edition:
1987, 2002, 2010) concerning applications of difference potentials to problems in
mathematical physics. In total, Ryaben’kii has published about a dozen textbooks
and monographs and more than 140 research papers in Russian and international
journals.

Ryaben’kii is a professor of the Moscow Institute for Physics and Technology
(since 1970) and a principal researcher in the Keldysh Institute of Applied Mathe-
matics of the Russian Academy of Sciences. He is an Honoured Science Worker of
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the Russian Federation (2005) and a winner of the I.G. Petrovsky Prize of the Pre-
sidium of the Russian Academy of Sciences (2007) for his book [94]. Several research
seminars supervised by Ryaben’kii have worked actively for many years during dif-
ferent periods of time. In 1998 a special section was organized in the framework of
the international conference ICOSAHOM’98 to honour the 50 years of Ryaben’kii’s
research activity and his outstanding contributions to computational mathemat-
ics. In 2013 the international conference in Moscow “Difference Schemes and Their
Applications” was dedicated to his 90th birthday. The talks at this conference filled
a special issue of the journal Applied Numerical Mathematics [95].

In summarizing briefly the contributions to applied mathematics already made
by Ryaben’kii, we can list the following concepts firmly associated in our minds with
his name: the Ryaben’kii–Filippov ‘convergence theorem’, the Godunov–Ryaben’kii
‘spectrum of a family of difference operators’, Ryaben’kii’s ‘smooth local interpo-
lation’, Ryaben’kii’s ‘difference potentials’, and Ryaben’kii’s ‘algorithm for active
noise reduction’.

At the age of 92, Ryaben’kii lives still fascinated with his favorite subject, math-
ematics. He is always cheerful and optimistic, and has an amazingly clear mind.
All who come in contact with him are immediately attracted by his sincerity, firm-
ness of principles, and kindness. Anyone fortunate enough to spend some time with
Ryaben’kii in friendly conversation or at meetings in the Institute of Applied Math-
ematics or elsewhere will forever remember his recollections of episodes of war, of
his friends and colleagues, so wholehearted and emotional, full of vivid character-
izations as they are. We maintain the most kind and grateful sentiments towards
Viktor Solomonovich and wish our dear friend, colleague, and teacher new successes
in his creative work, a long physical and scientific life, good health, and happiness.

S.K. Godunov, V.T. Zhukov, M.I. Lazarev, I.L. Sofronov,
V.I. Turchaninov, A.S. Kholodov, S.V. Tsynkov,

B.N. Chetverushkin, and Ye.Yu. Epshteyn
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