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Abstract

Shallow water equations (SWE) are fundamental nonlinear hyperbolic PDE-based models in
fluid dynamics that are essential for studying a wide range of geophysical and engineering phe-
nomena. Therefore, stable and accurate numerical methods for SWE are needed. Although some
algorithms are well studied for deterministic SWE, more effort should be devoted to handling the
SWE with uncertainty. In this paper, we incorporate uncertainty through a stochastic Galerkin
(SG) framework, and building on an existing hyperbolicity-preserving SG formulation for 2D SWE,
we construct the corresponding entropy flux pair, and develop structure-preserving, well-balanced,
second-order energy conservative and energy stable finite volume schemes for the SG formulation of
the two-dimensional shallow water system. We demonstrate the efficacy, applicability, and robust-
ness of these structure-preserving algorithms through several challenging numerical experiments.

Keywords: stochastic shallow water equations, stochastic Galerkin, entropy flux pair, structure-
preserving algorithms, energy conservative schemes, energy stable schemes

Contents

1 Introduction 2
1.1 Contributions of this paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Stochastic Galerkin formulation of the two-dimensional shallow water equations 4
2.1 Polynomial chaos expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Hyperbolic-preserving stochastic Galerkin formulation for 2D shallow water equation . . 5

3 An entropy flux pair for the 2D SG SWE 6
3.1 Entropy flux pairs for the deterministic SWE . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 An entropy flux pair for the 2D SG SWE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 Well-balanced energy conservative and energy stable schemes for the 2D SG SWE 8
4.1 Energy conservative schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 An energy conservative scheme for the 2D SG SWE (EC) . . . . . . . . . . . . . . . . . . 11
4.3 A first-order energy stable scheme (ES1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.4 A second-order energy stable scheme (ES2) . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1



5 Algorithmic details and pseudocode 16
5.1 Desingularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.2 Hyperbolicity-preserving criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.3 Adaptive time step size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.4 Numerical imposition of boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.5 Measuring energy change through augmented energy . . . . . . . . . . . . . . . . . . . . . 18

6 Numerical experiments 19
6.1 Accuracy test for the energy conservative and the energy stable schemes . . . . . . . . . 21
6.2 Gaussian-shape hump with stochastic bottom . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.3 Gaussian-shape hump with stochastic initial water surface . . . . . . . . . . . . . . . . . . 23
6.4 A submerged flat plateau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.5 Perturbation to lake-at-rest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.6 Gaussian-shape hump with two-dimensional random variable . . . . . . . . . . . . . . . . 33

7 Conclusion 35

A Proof of theorem 2 38
A.1 Proof of lemma 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
A.2 Proof of lemma 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
A.3 Proof of lemma 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

B Proofs for section 4.2 40
B.1 Proof of lemma 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
B.2 Proof of lemma 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
B.3 Proof of lemma 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

1 Introduction

The Saint-Venant system of shallow water equations is widely used in mathematical and physical mod-
eling of geophysical fluid flows, where the horizontal length scale is much greater than the vertical length
scale, such as in rivers, lakes, and coastal regions [14]. The shallow water equations can capture the
essential dynamics of wave propagation, currents, and other hydrodynamic behaviors under the assump-
tion of a shallow fluid layer, making them suitable for modeling a variety of practical problems involving
water flows. Despite the wide applicability of shallow water systems, shallow water models with ran-
dom component are even more relevant for practical real-world situations since precise knowledge of
an environment or operating conditions is frequently absent. Such random component/uncertainty can
improve the predictive capabilities of the models, motivating the development of advanced methods
to incorporate and manage the uncertainty in the governing shallow water systems. In this context,
we will consider the parameterized stochastic shallow water equations (SWE), with the parameter as a
random variable modeling the uncertainty.

In order to discretize the parameterized SWE, we consider the polynomial chaos expansion (PCE),
which is a technique for modeling uncertainty in parameterized systems. Initially introduced by Wiener
[55] for Gaussian processes using Hermite polynomials, the method has since been extended to more
general orthogonal polynomial bases to handle random inputs with various distributions [26, 36, 54,
64]. The PCE approach effectively encodes uncertainty in parameterized partial differential equations
(PDEs), resulting in a system of equations that can be solved using two major classes of methods:
intrusive methods and non-intrusive methods. Based on sampling [42, 43, 63], non-intrusive methods
construct the polynomial solution to the parameterized system by collecting an ensemble of solutions
to the deterministic form at a collection of fixed values of the parameters corresponding to random
variables. This approach can utilize existing and trusted legacy solvers for the deterministic SWE,
for example, see, e.g. [67, 32, 47, 9, 59, 60, 61, 33, 4, 18, 31, 40, 58, 57, 66]. However, the solutions
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generated by the non-intrusive approaches may be less accurate than those from intrusive methods.
Moreover, ensuring associated structure-preserving properties, including the entropy conditions, can be
challenging or impossible.

In the context of PCE methods, intrusive methods typically refer to the stochastic Galerkin (SG)
approach, where the truncated PCE [55, 64] representations of the state variables are projected using a
Galerkin method in the stochastic space. This process results in a new system of deterministic PDEs,
with the variables being the truncated PCE coefficients. To solve the new system, a substantial rewrite
of legacy codes and PDEs solvers is required, which is one of the drawbacks of intrusive methods.
However, the SG method is generally expected to be more accurate than some alternative non-intrusive
methods. Since the SG method is based on projection, it leads to near-optimal accuracy in the L2 sense
for static problems [1, 35]. Additionally, the SG approach provides opportunities to rigorously prove
the desired properties of the SG system and the subsequent numerical schemes. Therefore, SG methods
have been effectively employed to model uncertainty in diffusion equations [65, 17], kinetic equations
[28, 49], and conservation and balance laws with symmetric Jacobian matrices [53].

However, for a general hyperbolic system of conservation and balance laws, such as the SWE system,
the associated SG system may not be hyperbolic [16, 24, 29]. Thus, the SG formulation may result in
a system of partial differential equations that belongs to a different class from the original determin-
istic system, potentially yielding unphysical solutions and compromising the robustness of subsequent
numerical schemes. Numerous recent efforts have explored numerical methods for the SG formula-
tion of various types of hyperbolic conservation laws. Some advances include SG-type analysis and
algorithms for scalar conservation laws [68] including well-balanced methods [30], Haar wavelet-based
approaches [25], hyperbolicity preservation through a non-equivalent Roe variables formulation [23],
filtering strategies [34], limiter-type methods [48], hyperbolicity formulations for linear problems [46] or
using linearization techniques [56], operator splitting [7, 8], non-conservative formulations of SG SWE
systems [5], and entropic variable representations [44, 45].

In this paper, we build upon the recent work on a hyperbolicity-preserving SG formulation for two-
dimensional SWE [12]. Despite the hyperbolicity-preserving property, if the corresponding source term
vanishes, the SG SWE is a nonlinear hyperbolic conservation and balance law and hence it inherits
standard challenges in developing numerical methods for such a model. For example, solutions can
develop shock discontinuities in finite time with generic initial conditions, potentially producing non-
unique weak solutions. Therefore, an additional entropy condition should be imposed, either implicitly
or explicitly, to identify the desired physical solution. Note that implementing implicit time-integration
solvers is challenging because of the nonlinearity involved in the system [10, 37, 39]. In addition,
depending on its structure, the SWE system is supposed to satisfy the well-balanced property [3],
ensuring that numerical schemes accurately capture the steady-state solution of the PDE. Moreover,
uncertainty in the stochastic model complicates all challenges when considering the SG SWE, making
them more ambiguous and difficult to address.

1.1 Contributions of this paper

In this paper, we extend the ideas developed in [13] to stochastic shallow water equations in two-
dimensional physical space. The main contributions of this paper are as follows:

• We derive an entropy flux pair for the hyperbolicity-preserving, positivity-preserving stochastic
Galerkin (SG) formulation of two-spatial-dimensional shallow water equations (SWE) from [12].
Entropy-entropy flux pairs are the theoretical starting point towards the entropy admissibility
criteria to resolve non-uniqueness of weak solutions.

• Using the entropy-entropy flux pair, we devise second-order energy conservative, and first- and
second-order energy stable finite volume schemes for the 2D SG SWE, all of which are also well-
balanced. The designed energy conservative and energy stable schemes are stochastic extensions
of the schemes developed in [21, 22] and are also the two-dimensional extensions of schemes
developed in [13] for the stochastic SWE in 1D physical space.
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• We present several challenging numerical experiments to evaluate the performance of our schemes,
including accuracy, well-balanced property, energy decay, and numerical robustness.

An outline of this paper is as follows: In Section 2, we present preliminaries of polynomial chaos
expansion (PCE) and the SG formulation of two-dimensional SWE system from [12]. In Section 3,
we introduce entropy flux pairs for the deterministic SWE discussed in [21] and construct an entropy
flux pair for the SG formulation of the two-dimensional SWE system. In Section 4, we develop energy
conservative and energy stable schemes, accompanied by theoretical proofs and algorithmic details. In
Section 6, we present several challenging numerical examples to demonstrate the performance of our
schemes and verify their theoretical properties. In Section 7 we provide a brief summary of the main
results of this paper and some potential topics for future research. Finally, we include some technical
details for several proofs of lemmas and theorems in appendices A and B.

2 Stochastic Galerkin formulation of the two-dimensional shal-
low water equations

In this section, we review the stochastic Galerkin (SG) formulation of the two-dimensional (2D) shallow
water equations (SWE), which possess a hyperbolicity-preserving property, as developed in [12]. We
begin with the deterministic form of the 2D SWE:

Ut + F (U)x +G(U)y = S(U), U = (h, qx, qy)⊺, (2.1)

where F and G denote the fluxes in the x- and y-directions, respectively, and S represents the source
term,

F (U) =
⎛
⎜⎜
⎝

qx

(qx)2

h
+ gh2

2
qxqy

h

⎞
⎟⎟
⎠
, G(U) =

⎛
⎜⎜
⎝

qy

qxqy

h
(qy)2

h
+ gh2

2

⎞
⎟⎟
⎠
, S(U) =

⎛
⎜
⎝

0

−gh∂B
∂x

−gh∂B
∂y

⎞
⎟
⎠
, (2.2)

where U = U(x, y, t) is the vector of conservative variables, h = h(x, y, t) is the water height, qx(x, y, t)
and qy(x, y, t) are the discharges in the x- and y-directions, respectively, and B(x, y) is the time-
independent bottom topography. For the stochastic shallow water equations, we consider introduction
of a random field ξ, which could result from uncertainty or ignorance of the inputs, for example,
bottom topography and initial data. We begin with some preliminaries for the model formulation of
the stochastic Galerkin approach to the stochastic shallow water equations.

2.1 Polynomial chaos expansion

In this subsection, we provide a brief review of polynomial chaos expansion (PCE). For further details,
see [15, 50, 62]. Let ξ ∈ Rd be a d-dimensional random variable with a Lebesgue density function ρ.
Define the L2-integrable function space associated with ρ as follows:

L2
ρ(Rd) ∶= {f ∶ Rd → R ∣ (∫

Rd
f2(s)ρ(s)ds)

1/2

< +∞} . (2.3)

Assuming that ρ has finite polynomial moments of all orders, there exists a d-variate orthonormal
polynomial basis {ϕk}∞k=1 such that,

E[ϕk(ξ)ϕl(ξ)] = ⟨ϕk, ϕl⟩ρ ∶= ∫
Rd

ϕk(s)ϕl(s)ρ(s)ds = δk,l, ∀k, l ∈ N, ϕ1(ξ) ≡ 1, (2.4)

where δk,l is the Kronecker delta. Further, under mild conditions [19], then these basis functions span
L2
ρ: For any z ∈ L2

ρ, then

z(x, y, t, ξ)
L2

ρ=
∞

∑
k=1

ẑk(x, y, t)ϕk(ξ), ẑk = ⟨z, ϕk⟩ρ (2.5)
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where x, y, and t are deterministic spatial and temporal variables, and ẑk(x, y, t) are the deterministic
Fourier-type coefficients corresponding to the orthonormal basis {ϕk}∞k=1. Numerical computations
require finite truncations of these expansions. Let P = span{ϕk, k = 1,2, . . . ,K} be a K-dimensional
polynomial subspace of L2

ρ. We then define the K-term PCE approximation of a random field z on this
subspace as follows:

ΠP [z](x, y, t, ξ) ∶=
K

∑
k=1

ẑk(x, y, t)ϕk(ξ). (2.6)

The statistics of ΠP [z] can be derived from its expansion coefficients. Specifically, the mean and
variance of the random field z can be expressed in terms of these coefficients as follows:

E[ΠP [z](x, y, t, ξ)] = ẑ1(x, y, t), Var[ΠP [z](x, y, t, ξ)] =
K

∑
k=2

ẑ2k(x, y, t). (2.7)

Our numerical schemes involve specific manipulations of truncated expansion coefficients. With ẑ =
(ẑ1, . . . , ẑk)⊺ ∈ RK the size-K vector of truncated PCE coefficients of z, define the linear operator
P ∶ RK → RK×K as follows:

P(ẑ) ∶=
K

∑
k=1

ẑkMk, Mk ∈ RK×K , (Mk)l,m ∶= ⟨ϕk, ϕlϕm⟩ρ. (2.8)

Due to the symmetry and commutativity properties of the operator P(⋅), the following identities hold,

P(ẑ) = (M1ẑ,M2ẑ, . . . ,MK ẑ), P(â)̂b = P (̂b)â, b̂⊺P(â) = â⊺P (̂b), (2.9)

The last two properties are proved in [13, Lemma 2.1], using the definition and symmetry of P. A
stochastic Galerkin (SG) formulation of a ξ-parameterized partial differential equation (PDE) assumes
that the state variable lies in the polynomial space P and forms a scheme corresponding to projecting the
PDE residual onto P . Note that the hyperbolicity of the straightforward SG formulation for nonlinear
hyperbolic PDEs, such as the shallow water equations, is not automatically guaranteed. Therefore,
special designs are required for the SG formulation of these nonlinear hyperbolic PDEs to preserve such
an important property.

2.2 Hyperbolic-preserving stochastic Galerkin formulation for 2D shallow
water equation

In this subsection, we review existing results on the hyperbolicity-preserving stochastic Galerkin formu-
lation of the two-spatial-dimensional shallow water equations (2D SG SWE) [12]. We follow a standard
Galerkin procedure in the stochastic space. It begins with reducing the problem to an alternative
finite-dimensional form by replacing the solutions (h, qx, qy) by the ansatz,

h ≃ hP ∶= ∑
k∈[K]

ĥk(x, y, t)ϕk(ξ),

qx ≃ qxP ∶= ∑
k∈[K]

(q̂x)k(x, y, t)ϕk(ξ),

qy ≃ qyP ∶= ∑
k∈[K]

(q̂y)k(x, y, t)ϕk(ξ),

(2.10)

respectively, and the bottom B by ΠP [B], where we use the notation [K] ∶= {1,2, . . . ,K}. With
a special choice of how the Galerkin projection is applied to the nonlinear, non-polynomial terms
(qx)2/h, (qy)2/h, qxqy/h introduced in [12], a SG system of balance laws was derived, whose state
variables are the coefficients in (2.10)

Ût + F̂ (Û)x + Ĝ(Û)y = Ŝ(Û , B̂). (2.11)
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Here, Û = (ĥ⊺, (q̂x)⊺, (q̂y)⊺)⊺ ∈ R3K , where ĥ, q̂x, q̂y are length-K vectors whose entries are the coeffi-
cients in (2.10). The flux terms are defined by

F̂ (Û) =
⎛
⎜
⎝

q̂x

P(q̂x)P−1(ĥ)q̂x + 1
2
gP(ĥ)ĥ

P(q̂x)P−1(ĥ)q̂y

⎞
⎟
⎠
, Ĝ(Û) =

⎛
⎜
⎝

q̂y

P(q̂y)P−1(ĥ)q̂x
P(q̂y)P−1(ĥ)q̂y + 1

2
gP(ĥ)ĥ

⎞
⎟
⎠
. (2.12)

The source term is given by

Ŝ(Û) =
⎛
⎜
⎝

0

−gP(ĥ)B̂x

−gP(ĥ)B̂y

⎞
⎟
⎠
. (2.13)

In the deterministic case, the fluxes (2.12) and the source term (2.13) reduce to their deterministic

forms as shown in (2.2). A notable observation from the above is that the deterministic term qxqy

h
have

two different stochastic representations in (2.12), i.e., P(q̂x)P−1(ĥ)q̂y ≠ P(q̂y)P−1(ĥ)q̂x. This different
treatment of these terms is essential to retaining hyperbolicity; a more detailed discussion of this fact
and a brief empirical investigation of the difference between these two stochastic representations is
provided in [12].

Recall the deterministic SWE is hyperbolic under the condition that the water height h > 0. There
is a natural extension of this property to the SG formulation of the SWE.

Theorem 1 (Theorem 3.1 in [12]). If the matrix P(ĥ) is strictly positive definite at every point (x, y, t)
in the computational spatial-temporal domain, then the SG formulation (2.11) is hyperbolic.

This result is proven by identifying a symmetrizing similarity transform of the SG SWE flux Jaco-

bians ∂F̂
∂Û

and ∂Ĝ
∂Û

. These flux Jacobians will be useful for us later, so we explicitly provide them below:

When P(ĥ) is invertible, the well-defined terms

û = P−1(ĥ)q̂x, v̂ = P−1(ĥ)q̂y, (2.14)

are stochastic representations of the x- and y-directional water velocity variables. I.e., these terms
can be interpreted as the vectors of the PCE coefficients of the x-velocity u ∶= qx/h and the y-velocity
v ∶= qy/h. The flux Jacobians of the SG SWE system (2.11) can then expressed in terms of K×K blocks
as follows:

∂F̂

∂Û
=
⎛
⎜
⎝

0 I 0

gP(ĥ) −P(q̂x)P−1(ĥ)P(û) P(q̂x)P−1(ĥ) +P(û) 0

−P(q̂x)P−1(ĥ)P(v̂) P(v̂) P(q̂x)P−1(ĥ)

⎞
⎟
⎠
,

∂Ĝ

∂Û
=
⎛
⎜
⎝

0 0 I

−P(q̂y)P−1(ĥ)P(û) P(q̂y)P−1(ĥ) P(û)
gP(ĥ) −P(q̂y)P−1(ĥ)P(v̂) 0 P(q̂y)P−1(ĥ) +P(v̂)

⎞
⎟
⎠
.

(2.15)

3 An entropy flux pair for the 2D SG SWE

To construct numerical schemes with desired energy stability properties, it is essential to derive en-
tropy flux pairs for the SG formulation (2.11) of the SWE. We first review entropy flux pairs for the
deterministic SWE discussed in [21].

3.1 Entropy flux pairs for the deterministic SWE

Solutions of systems of conservation and balance laws can develop shock discontinuities in finite time,
even from smooth initial data, potentially leading to non-unique weak solutions defined in the distri-
butional sense. To identify the desired physically relevant solution, an additional entropy admissibility
criterion is imposed [2, 10]. For a general balance law in two spatial dimensions,

Ut + F (U)x +G(U)y = S(U), (3.1)
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an entropy flux tuple is a tuple (E(U),H(U),K(U)) satisfying the companion balance law,

E(U)t +H(U)x +K(U)y = 0, (3.2)

where the entropy E(U) is a scalar function that is convex in U , and H and K represent the corre-
sponding entropy flux functions. For the consistency with the original balance law, the entropy flux
pair (E,H,K) is supposed to satisfy the compatibility condition as follows:

∂E

∂U
(Fx +Gy − S) =Hx +Ky. (3.3)

This condition ensures that multiplying the equation (3.1) by ∂E
∂U

recovers the equation (3.2) for smooth
solutions. When the source term vanishes and (E,H,K) = (E(U),H(U),K(U)), the compatibility
condition (3.3) simplifies to the usual entropy condition for conservation laws. Even though an entropy
flux pair may not exist for a general system of balance laws, the companion balance law (3.2) for a
hyperbolic system of balance laws, derived from continuum physics, is usually related to the Second
Law of thermodynamics, with the total energy of the system often serving as the entropy function.
Several related examples can be found in Section 3.3 of [10]. For the deterministic SWE in (2.1), the
total energy [21] is given by,

Ed(U) = 1

2
(qxu + qyv) + 1

2
gh2 + ghB, u ∶= qx/h, v ∶= qy/h, (3.4)

where 1
2
(qxu+ qyv) is the kinetic energy, and 1

2
gh2 + ghB is the potential energy. A direct computation

of the Hessian confirms that Ed(U) is convex in U = (h, qx, qy). If we choose the fluxes Hd and Kd as,

Hd(U) ∶= 1

2
(hu3 + huv2) + gqx(h +B), Kd(U) ∶= 1

2
(hu2v + hv3) + gqy(h +B), (3.5)

then one can verify directly that Ed
t +Hd

x+Kd
y = 0, i.e., (Ed,Hd,Kd) satisfies the companion balance law

(3.2). Hence, (Ed,Hd,Kd) is an entropy flux tuple for (2.1). In the case of weak solutions with shocks,
the entropy admissibility criterion requires that energy dissipates according to a vanishing viscosity
principle as follows:

Ed(U)t +Hd(U)x +Kd(U)y ≤ 0. (3.6)

By extending the results of deterministic SWE, we construct an entropy flux pair for the SG formulation
of the 2D SWE system (2.11) in the next section. This involves identifying a tuple, consisting of an
entropy function that is convex in the state variable, that satisfies the companion balance law.

3.2 An entropy flux pair for the 2D SG SWE

In this subsection, we focus on constructing an entropy flux pair for the SG system (2.11). We recall
the discussion surrounding (2.11) for the definition of Û . The main result of this section is stated in
the following theorem.

Theorem 2. Define the entropy function

E(Û) = 1

2
((q̂x)⊺û + (q̂y)⊺v̂) + 1

2
g∥ĥ∥2 + gĥ⊺B̂, (3.7)

and the flux functions

H(Û) =1
2
(û⊺P(q̂x)û + v̂⊺P(q̂x)v̂) + g(q̂x)⊺(ĥ + B̂),

K(Û) =1
2
(v̂⊺P(q̂y)v̂ + û⊺P(q̂y)û) + g(q̂y)⊺(ĥ + B̂),

(3.8)

If P(ĥ) > 0, i.e., strictly positive definite, then (E,H,K) is an entropy flux pair for the SG system of
the two-dimensional SWE (2.11).
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Note that the stochastic variants of entropy function (3.7) and flux functions (3.8) reduce to the
deterministic energy (3.4) and fluxes (3.5), respectively. The proof of theorem 2 is similar to that of
[13, Theorem 3.1], which proves a corresponding result for an SG formulation of the SWE in a single
spatial dimension. Hence, we relegate most details to appendix A, and provide only an outline of the
major results needed. We start from a lemma that computes the gradient of û and v̂. This technical
result is also useful later when we construct energy conservative and stable schemes.

Lemma 1 (Gradients of û, v̂). Let q̂x, q̂y be arbitrary, and let ĥ ∈ RK be such that P (ĥ) is invertible.
Define û, v̂ by (2.14), then the gradients of the velocities are

∂û

∂Û
= [−P−1(ĥ)P(û),P−1(ĥ),0], ∂v̂

∂Û
= [−P−1(ĥ)P(v̂),0,P−1(ĥ)]. (3.9)

For the proof, see appendix A. This result is a crucial ingredient in the following two lemmas.

Lemma 2 (Convexity of E(Û)). If P(ĥ) is positive definite, then the function E(Û) defined (3.7) is
convex in Û .

Lemma 3 (Companion balance law). If Û is smooth, the entropy flux pair (E,H,K) defined in (3.7)
and (3.8) satisfies the two-dimensional companion balance law:

E(Û)t +H(Û)x +K(Û)y = 0. (3.10)

The proofs of lemmas 2 and 3 are provided in appendix A. The proof of Theorem 2 follows from
Lemmas 2 and 3. I.e., we construct an entropy flux pair (E,H,K), as defined in (3.7) and (3.8), for
the SG SWE (2.11). This forms the foundation for developing energy conservative and energy stable
semi-discrete finite volume schemes.

For our next goal of constructing energy conservative and energy stable schemes we define the
following quantities,

V̂ ∶=(∂E
∂Û
)
⊺

= (−1
2
û⊺P(û) − 1

2
v̂⊺P(v̂) + g(ĥ + B̂)⊺, û⊺, v̂⊺)

⊺

,

Ψ ∶=V̂ ⊺F̂ −H = 1

2
gû⊺P(ĥ)ĥ,

Φ ∶=V̂ ⊺Ĝ −K = 1

2
gv̂⊺P(ĥ)ĥ,

(3.11)

where V̂ is called the entropy variable, and Ψ and Φ are called stochastic energy potentials.

4 Well-balanced energy conservative and energy stable schemes
for the 2D SG SWE

In this section, we develop a well-balanced, second-order energy conservative (EC) scheme, as well as
first-order and second-order energy stable (ES) schemes for the stochastic Galerkin (SG) formulation
for the two-dimensional shallow water equations (SWE) (2.11). These schemes are constructed using
the entropy-flux pairs provided in theorem 2 and are designed to provide energy conservation and decay
properties. They are stochastic extensions of the methods in [21] for deterministic balance laws, and
are two-dimensional extensions of methods in [13] for the SWE SG system in one spatial dimension.
We start by defining the well-balanced property of a numerical scheme, which ensures that stochastic
“lake-at-rest” steady states are equilibrium states at the discrete level.

Definition 1 (Well-Balanced SG SWE Property [12]). The solution (hP , q
x
P , q

y
P ) of (2.11) is said to

be well-balanced if it satisfies the stochastic “lake-at-rest” solution,

qxP (x, y, t, ξ) = q
y
P (x, y, t, ξ) ≡ 0, hP (x, y, t, ξ) +ΠP [B](x, y, t, ξ) ≡ C(ξ), (4.1)
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where C(ξ) is a random scalar depending only on ξ. Such a well-balanced solution describes a still water
surface with a flat but stochastic water surface. In terms of the system of PCE coefficients, (4.1) is
equivalent to the following vector equations

q̂x = q̂y ≡ 0, ĥ + B̂ ≡ Ĉ, ∀(x, y, t) ∈ D × [0, T ], (4.2)

with spatial domain D and terminal time T . Note that the vector equations (4.2) represent a steady
state of the two-spatial-dimensional SG SWE (2.11).

4.1 Energy conservative schemes

The semi-discrete form for finite volume (FV) schemes for (2.11) on a uniform rectangular mesh reads,

d

dt
Ui,j = −

Fi+ 1
2 ,j
−Fi− 1

2 ,j

∆x
−
Gi,j+ 1

2
− Gi,j− 1

2

∆y
+Si,j . (4.3)

The domain D is tessellated with rectangular cells Ii,j ∶= [xi− 1
2
, xi+ 1

2
]×[yj− 1

2
, yj+ 1

2
], with a uniform mesh

size ∆x = xi+ 1
2
−xi− 1

2
and ∆y = yj+ 1

2
− yj− 1

2
. Hence, ∆x∆y is the size (area) of cell Ii,j . We consider M

cells in each direction so that the rectangular domain so that i, j ∈ [M]. The quantity Ui,j(t) denotes
the numerical approximation to the cell average of the vector Û over cell Ii,j at time t, i.e., Ui,j(t) ≈

1
∆x∆y ∫Ii,j Û(x, y, t)dxdy. The numerical fluxes Fi± 1

2 ,j
and Gi,j± 1

2
depend on the neighboring states,

e.g., Ui,j and Ui+1,j for Fi+ 1
2 ,j

. Additionally, Si,j ≈ 1
∆x∆y ∫Ii,j Ŝ(Û , B̂) represents the discretization of

the source term, which should be designed to ensure a well-balanced numerical scheme in the sense of
definition 1. Other boldface notations, such as (hi,j ,q

x
i,j ,q

y
i,j ,Bi,j), are defined in a similar manner.

The discrete velocities ui,j and vi,j are defined as stochastic variants of (2.14), as follows:

ui,j ∶= P−1(hi,j)qx
i,j , vi,j ∶= P−1(hi,j)qy

i,j . (4.4)

The discrete entropic quantities, stochastic variants of (3.11), are defined in terms of the discrete
conservative variable Ui,j and the discrete velocities ui,j ,vi,j as follows:

Ei,j ∶=
1

2
((qx

i,j)⊺ui,j + (qy
i,j)
⊺vi,j) +

1

2
g∥hi,j∥2 + gh⊺i,jBi,j ,

Vi,j ∶=(
∂Ei,j

∂Ui,j
)
⊺

= (−1
2
u⊺i,jP(ui,j) −

1

2
v⊺i,jP(vi,j) + g(hi,j +Bi,j)⊺, u⊺i,j , v⊺i,j)

⊺

,

Ψi,j ∶=
1

2
gu⊺i,jP(hi,j)hi,j , Φi,j ∶=

1

2
gv⊺i,jP(hi,j)hi,j .

(4.5)

Our numerical schemes involve the average and jump quantities at cell interfaces [13, 21]:

ai+ 1
2 ,j
∶=

ai,j + ai+1,j

2
, ai,j+ 1

2
∶=

ai,j + ai,j+1

2
,

JaKi+ 1
2 ,j
∶= ai+1,j − ai,j , JaKi,j+ 1

2
∶= ai,j+1 − ai,j ,

(4.6)

where ai,j denotes any cell averaged quantity over Ii,j , e.g., Ui,j . The expressions (4.6) are equivalent
to

ai,j = ai+ 1
2 ,j
−

JaKi+ 1
2 ,j

2
= ai− 1

2 ,j
+

JaKi− 1
2 ,j

2

= ai,j+ 1
2
−

JaKi,j+ 1
2

2
= ai,j− 1

2
+

JaKi,j− 1
2

2
.

(4.7)

Then we introduce additional equalities for the interfacial averages and jumps associated with the linear
operator P in the following lemma. These are straightforward generalizations of [13, Lemma 4.1], so
we omit the proof.
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Lemma 4. Let ai,j ,bi,j be any spatially discrete quantities, then

P(ai+ 1
2 ,j
)JaKi+ 1

2 ,j
= 1

2
JP(a)aKi+ 1

2 ,j
, JaK⊺

i+ 1
2 ,j

bi+ 1
2 ,j
+ JbK⊺

i+ 1
2 ,j

ai+ 1
2 ,j
= Ja⊺bKi+ 1

2 ,j
, (4.8a)

P(ai,j+ 1
2
)JaKi,j+ 1

2
= 1

2
JP(a)aKi,j+ 1

2
, JaK⊺

i,j+ 1
2

bi,j+ 1
2
+ JbK⊺

i,j+ 1
2

ai,j+ 1
2
= Ja⊺bKi,j+ 1

2
. (4.8b)

To provide the specific definitions for energy conservative and energy stable schemes for systems
of balance laws in two spatial dimensions, we recall that the semi-discrete FV form (4.3) is called a
conservative scheme when the source term vanishes i.e., Si,j = 0. In this case, and by summing (4.3)
over the cells, we obtain,

d

dt
∑

i,j∈[M]

Ui,j(t) =
M

∑
j=1

F 1
2 ,j
−FM+ 1

2 ,j

∆x
+

M

∑
i=1

Gi, 12 − Gi,M+ 1
2

∆y
. (4.9)

This implies that, if periodic boundary conditions are imposed so that F 1
2 ,j
= FM+ 1

2 ,j
and similarly

for G, then Û remains constant over time. Since the entropy-flux pair variables (E,H,K) are explicit
functions of the state variable Û and the inputs of the source term, i.e., B̂, the semi-discrete form (4.3)
of the balance law (2.11) can be transformed into a semi-discrete form of the corresponding companion
balance law (3.10) for the entropy (energy) of the system. The notions of energy conservative and
energy stable schemes can be defined through the evolution of the entropy/energy of the system.

Definition 2 (Energy conservative and energy stable schemes). Suppose the system of balance laws
(2.11) has an entropy flux pair (E,H,K), where E(Û) represents the system’s energy. Then the semi-
discrete finite volume (FV) scheme (4.3) is an Energy Conservative (EC) scheme if it can be
rewritten in the following semi-discrete form for the evolution of the numerical cell averages Ei,j of E:

d

dt
Ei,j(t) = −

1

∆x
(Hi+ 1

2 ,j
−Hi− 1

2 ,j
) − 1

∆y
(Ki,j+ 1

2
−Ki,j− 1

2
), (4.10)

where Hi+ 1
2 ,j

represents the numerical entropy flux at the interface (x, y) = (xi+ 1
2
, yj), and Ki,j+ 1

2

represents another numerical entropy flux at the interface location (x, y) = (xi, yj+ 1
2
).

Alternatively, the scheme (4.3) is called an Energy Stable (ES) scheme under the weaker condition,

d

dt
Ei,j(t) ≤ −

1

∆x
(Hi+ 1

2 ,j
−Hi− 1

2 ,j
) − 1

∆y
(Ki,j+ 1

2
−Ki,j− 1

2
). (4.11)

By summing (4.10) over all cells of the computational domain, a form similar to (4.9) can be
obtained, but for energy instead of the state variable U , showing that the cumulative energy remains
constant over time under periodic boundary conditions. For non-periodic boundary conditions, energy
can increase due to the boundary terms; we discuss a notion of augmented energy in section 5.5 that
attempts to separate this potential intrinsic energy increase effect from any energy increase due to
numerical discretizations.
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4.2 An energy conservative scheme for the 2D SG SWE (EC)

For the scheme (4.3), we make the following choices for the fluxes and balance terms:

Fi+ 1
2 ,j
= FEC

i+ 1
2 ,j
=
⎛
⎜⎜
⎝

P(hi+ 1
2 ,j
)ui+ 1

2 ,j
1
2
g(P(h)h)i+ 1

2 ,j
+P(ui+ 1

2 ,j
)P(hi+ 1

2 ,j
)ui+ 1

2 ,j

P(vi+ 1
2 ,j
)P(hi+ 1

2 ,j
)ui+ 1

2 ,j

⎞
⎟⎟
⎠
,

Gi,j+ 1
2
= GEC

i,j+ 1
2
=
⎛
⎜⎜
⎝

P(hi,j+ 1
2
)vi,j+ 1

2

P(ui,j+ 1
2
)P(hi,j+ 1

2
)vi,j+ 1

2
,

1
2
g(P(h)h)i,j+ 1

2
+P(vi,j+ 1

2
)P(hi,j+ 1

2
)vi,j+ 1

2

⎞
⎟⎟
⎠
,

Si,j =
⎛
⎜⎜
⎝

0

− g
2∆x
(P(hi+ 1

2 ,j
)JBKi+ 1

2 ,j
+P(hi− 1

2 ,j
)JBKi− 1

2 ,j
)

− g
2∆y
(P(hi,j+ 1

2
)JBKi,j+ 1

2
+P(hi,j− 1

2
)JBKi,j− 1

2
)

⎞
⎟⎟
⎠
.

(4.12)

These choices ensure that the scheme is energy conservative and well-balanced.

Theorem 3 (Second-order EC well-balanced scheme). Suppose the bottom topography function B is
independent of time. The semi-discrete FV scheme (4.3) for the two-spatial-dimensional SG SWE
system (2.11) with fluxes and source term in (4.12) is a well-balanced EC scheme with local truncation
error O(∆x2 +∆y2).

The proof consists of several parts, which require nontrivial extensions of the one-dimensional results
in [13]. However, because the proof components are relatively technical, we place their presentation in
the appendix. First, we demonstrate the second-order truncation error through direct computation.

Lemma 5 (Second-order truncation error). By selecting the numerical fluxes and the source term
(4.12), the semi-discrete FV scheme (4.3) has a local truncation error of O(∆x2 +∆y2).

See appendix B.1 for the detailed proof. Next, we show that the discretization of the source term
Si,j in (4.12) satisfies the well-balanced property, which is the extension of results in [13] to two spatial
dimensions.

Lemma 6 (Well-balanced property). Suppose the source term is chosen as (4.12) and the bottom
topography function B is time-independent, then the semi-discrete FV scheme (4.3) is well-balanced.

The proof of the above result is contained in appendix B.2. The final step in proving the main
theorem of this section is to identify a sufficient condition that ensures the numerical fluxes produce an
EC scheme. This is a two-spatial-dimensional extension of that in [13] and also a stochastic variant of
that in the deterministic case in [21].

Lemma 7 (A sufficient condition for EC schemes). Let Si,j be selected as in (4.12). Suppose the
numerical fluxes Fi+ 1

2 ,j
,Gi,j+ 1

2
satisfy

JV K⊺
i+ 1

2 ,j
Fi+ 1

2 ,j
=JΨKi+ 1

2 ,j
+ gJBK⊺

i+ 1
2 ,j
P(hi+ 1

2 ,j
)ui+ 1

2 ,j
,

JV K⊺
i,j+ 1

2

Gi,j+ 1
2
=JΦKi,j+ 1

2
+ gJBK⊺

i,j+ 1
2

P(hi,j+ 1
2
)vi,j+ 1

2
,

(4.13)

where the discrete stochastic energy potentials Ψ and Φ are defined in (4.5). Then the corresponding
FV scheme (4.3) is an EC scheme, i.e., it satisfies (4.10), with the numerical energy fluxes given by,

Hi+ 1
2 ,j
∶= V ⊺i+ 1

2 ,j
Fi+ 1

2 ,j
−Ψi+ 1

2 ,j
− g

4
JBK⊺

i+ 1
2 ,j
P(hi+ 1

2 ,j
)JuKi+ 1

2 ,j

Ki,j+ 1
2
∶= V ⊺i,j+ 1

2
Gi,j+ 1

2
−Φi,j+ 1

2
− g

4
JBK⊺

i,j+ 1
2

P(hi,j+ 1
2
)JvKi,j+ 1

2
.

(4.14)
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For the proof, see appendix B.3. Given all essential lemmas above, we can complete the proof of
Theorem 3.

Proof of Theorem 3. It follows from Lemmas 5 and 6 that the scheme (4.3) is well-balanced and second-
order accurate for smooth solutions. To show that it is EC, it suffices to verify the condition in Lemma
7, which can be accomplished by direct computation:

JV K⊺
i+ 1

2 ,j
FEC

i+ 1
2 ,j

(4.5),(4.12)= (g (JhKi+ 1
2 ,j
+ JBKi+ 1

2 ,j
) − 1

2
JP(u)uKi+ 1

2 ,j
− 1

2
JP(v)vKi+ 1

2 ,j
)
⊺

P(hi+ 1
2 ,j
)ui+ 1

2 ,j

+ JuK⊺
i+ 1

2 ,j
(1
2
g (P(h)h)

i+ 1
2 ,j
+P(ui+ 1

2 ,j
)P(hi+ 1

2 ,j
)ui+ 1

2 ,j
)

+ JvK⊺
i+ 1

2 ,j
P(vi+ 1

2 ,j
)P(hi+ 1

2 ,j
)ui+ 1

2 ,j

(4.8a)= g (JhKi+ 1
2 ,j
+ JBKi+ 1

2 ,j
)
⊺

P(hi+ 1
2 ,j
)ui+ 1

2 ,j
+ 1

2
gJuK⊺

i+ 1
2 ,j
(P(h)h)

i+ 1
2 ,j

(4.8a)= 1

2
gJP(h)hK⊺

i+ 1
2 ,j

ui+ 1
2 ,j
+ gJBK⊺

i+ 1
2 ,j
P(hi+ 1

2 ,j
)ui+ 1

2 ,j
+ 1

2
gJuK⊺

i+ 1
2 ,j
(P(h)h)

i+ 1
2 ,j

(4.8a)= 1

2
gJu⊺P(h)hKi+ 1

2 ,j
+ gJBK⊺

i+ 1
2 ,j
P(hi+ 1

2 ,j
)ui+ 1

2 ,j

=JΨKi+ 1
2 ,j
+ gJBK⊺

i+ 1
2 ,j
P(hi+ 1

2 ,j
)ui+ 1

2 ,j
.

(4.15)

Also, by using the definition of GEC
i,j+ 1

2

(4.12), Φ (4.5), and equalities (4.8a), through an analogous

computation as above, one can obtain

JV K⊺
i,j+ 1

2

GEC
i,j+ 1

2
= JΦKi,j+ 1

2
+ gJBK⊺

i,j+ 1
2

P(hi,j+ 1
2
)vi,j+ 1

2
, (4.16)

which verifies (4.13). Hence, it shows that the scheme (4.3), with the numerical fluxes and source term
defined in (4.12), is energy conservative.

4.3 A first-order energy stable scheme (ES1)

The scheme defined in the previous part preserves the energy of the shallow water equation system, which
can lead to non-physical oscillations, since the energy is supposed to dissipate in the presence of shocks.
Some existing work can resolve this issue by introducing artificial numerical viscosity [20, 21, 22, 51, 52].
We adopt this approach by extending the energy-stable diffusion operators proposed in [20, 21, 22] to
the stochastic case in two spatial dimensions.

First, we recall the traditional Roe-type diffusion (“RD”) applied to a conservation law, which
involves the EC fluxes, defined as follows:

FRD
i+ 1

2 ,j
∶= FEC

i+ 1
2 ,j
− 1

2
QRoe,F

i+ 1
2 ,j

JUKi+ 1
2 ,j

, GRD
i,j+ 1

2
∶= GEC

i,j+ 1
2
− 1

2
QRoe,G

i,j+ 1
2

JUKi,j+ 1
2

(4.17)

where QRoe,F and QRoe,G are positive semi-definite matrices defined by diagonalizing the Jacobians of
the interfacial fluxes at the Roe-averaged state U :

QRoe,F

i+ 1
2 ,j
∶= TRoe

F ∣ΛRoe
F ∣ (TRoe

F )−1 , ∂F̂

∂Û
(U i+ 1

2 ,j
) = TRoe

F ΛRoe
F (TRoe

F )−1 , (4.18)

QRoe,G

i,j+ 1
2

∶= TRoe
G ∣ΛRoe

G ∣ (TRoe
G )−1 , ∂Ĝ

∂Û
(U i,j+ 1

2
) = TRoe

G ΛRoe
G (TRoe

G )−1 . (4.19)

12



The semi-discrete scheme (4.3) with the numerical fluxes FRD
i+ 1

2 ,j
and GRD

i,j+ 1
2

would behave like

d

dt
Ui,j(t) = −

FEC
i+ 1

2 ,j
−FEC

i− 1
2 ,j

∆x
−
GEC
i,j+ 1

2

− GEC
i,j− 1

2

∆y
+Si,j

+ 1

2∆x
(QRoe,F

i+ 1
2 ,j

JUKi+ 1
2 ,j
−QRoe,F

i− 1
2 ,j

JUKi− 1
2 ,j
)

+ 1

2∆y
(QRoe,G

i,j+ 1
2

JUKi,j+ 1
2
−QRoe,G

i,j− 1
2

JUKi,j− 1
2
)

≈ − 1

∆x
(F̂ (Û)∣

(x
i+ 1

2
,yj)
− F̂ (Û)∣

(x
i− 1

2
,yj)
) − 1

∆y
(Ĝ(Û)∣

(xi,yj+ 1
2
)
− Ĝ(Û)∣

(xi,yj− 1
2
)
)

+∆xQF Ûxx∣(xi,yj)
+∆yQGÛyy ∣(xi,yj)

+ S(Û)∣
(xi,yj)

,

(4.20)

where QF and QG are positive-definite matrices, and Ûxx and Ûyy represent the second-order spatial
derivatives of the state variables in the PDE, thus introducing diffusion into the EC scheme.

It is convenient to ensure energy stability by adding a numerical diffusion term operating on the
entropic variables V rather than on the conservative variables U . We introduce the following first-order
energy stable numerical fluxes:

FES1
i+ 1

2 ,j
∶= FEC

i+ 1
2 ,j
− 1

2
QES,F

i+ 1
2 ,j

JV Ki+ 1
2 ,j

, GES1
i,j+ 1

2
∶= GEC

i,j+ 1
2
− 1

2
QES,G

i,j+ 1
2

JV Ki,j+ 1
2
, (4.21)

whereQES,F

i+ 1
2 ,j

andQES,G

i,j+ 1
2

are positive definite matrices identified in a Roe-type manner from the adjacent

states (Ui,j ,Ui+1,j) at the cell interface (xi+ 1
2
, yj), and (Ui,j ,Ui,j+1) at the cell interface (xi, yj+ 1

2
),

respectively. The term Vi,j , defined in (4.5), serves as a second-order approximation of the cell average

of the entropy variable V̂ . The matrices QES,F and QES,G will be defined in terms of the following
Roe-type energy stable operator,

Qi+ 1
2 ,j
(Ui,j ,Ui+1,j) ∶= TF ∣ΛF ∣T ⊺F ≥ 0, Qi,j+ 1

2
(Ui,j ,Ui,j+1) ∶= TG∣ΛG∣T ⊺G ≥ 0, (4.22)

where the matrices TF ,ΛF ,TG,ΛG are defined from the eigendecomposition of the flux Jacobians ∂F̂
∂Û

and ∂Ĝ
∂Û

evaluated at the following Roe-type averaged state,

∂F̂

∂Û
(Ũi+ 1

2 ,j
) = TFΛFT

−1
F , Ũi+ 1

2 ,j
∶=
⎛
⎜⎜
⎝

hi+ 1
2 ,j

P(hi+ 1
2 ,j
)ui+ 1

2 ,j

P(hi+ 1
2 ,j
)vi+ 1

2 ,j
,

⎞
⎟⎟
⎠
, (4.23a)

∂Ĝ

∂Û
(Ũi,j+ 1

2
) = TGΛGT

−1
G , Ũi,j+ 1

2
∶=
⎛
⎜⎜
⎝

hi,j+ 1
2

P(hi,j+ 1
2
)ui,j+ 1

2

P(hi,j+ 1
2
)vi,j+ 1

2

⎞
⎟⎟
⎠
. (4.23b)

Then we set the diffusion matrices QES,F and QES,G appearing in the definition (4.21) of the numerical
fluxes FES1

i+ 1
2 ,j

and GES1
i,j+ 1

2

, respectively, as,

QES,F

i+ 1
2 ,j
∶= Qi+ 1

2 ,j
(Ui,j ,Ui+1,j) = TF ∣ΛF ∣T ⊺F . (4.24a)

QES,G

i,j+ 1
2

∶= Qi,j+ 1
2
(Ui,j ,Ui,j+1) = TG∣ΛG∣T ⊺G, (4.24b)

The energy stable scheme in this subsection is constructed by using the numerical fluxes in (4.21), with
the diffusion matrices given in (4.24). We codify the properties of this scheme as follows.
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Theorem 4 (ES1 scheme). Consider the semi-discrete FV scheme (4.3) with the source term given
in (4.12) and diffusive numerical fluxes FES1

i+ 1
2 ,j

,GES1
i,j+ 1

2

defined in (4.21), and the diffusion matrices

QES,F

i+ 1
2 ,j

,QES,G

i,j+ 1
2

as defined in (4.24). The resulting scheme is a first-order, well-balanced, and energy

stable scheme.

Proof. Note that we have already shown that the scheme (4.3) with EC fluxes FEC
i+ 1

2 ,j
and GEC

i,j+ 1
2

is

second-order accurate. Therefore, using the definition of Vi,j , it is straightforward to show the following
approximation

JV Ki+ 1
2 ,j
≈∆xV̂x(xi+ 1

2
, yj), JV Ki,j+ 1

2
≈∆yV̂y(xi, yj+ 1

2
), (4.25)

which implies that the artificial diffusion term in (4.21) introduces a first-order local truncation error
in the scheme.

To demonstrate that this scheme is well-balanced, we consider the stochastic lake-at-rest initial data
described as introduced in (B.9) in section 4.1. This, combined with the definition of Vi,j in (4.5), leads
to the conclusion that JV Ki+ 1

2 ,j
= JV Ki,j+ 1

2
= 0. Since the EC fluxes are shown to be well-balanced in

Lemma 6, it follows that the ES1 scheme is also well-balanced.
Finally, we need to show the ES property (4.11). Define the ES1 energy fluxes

HES1
i+ 1

2 ,j
∶=HEC

i+ 1
2 ,j
− 1

2
V
⊺

i+ 1
2 ,j

QES,F

i+ 1
2 ,j

JV Ki+ 1
2 ,j

KES1
i,j+ 1

2
∶= KEC

i,j+ 1
2
− 1

2
V
⊺

i,j+ 1
2
QES,G

i,j+ 1
2

JV Ki,j+ 1
2
,

(4.26)

where the EC energy fluxes HEC
i+ 1

2 ,j
and KEC

i,j+ 1
2

are defined in (4.14). As in the proof of Lemma 7

(appendix B.3), we multiply (4.3) by V ⊺i,j , and use a similar estimate with the ES1 energy fluxes defined
above. This leads to the following estimate:

d

dt
Ei,j(t) = −

1

∆x
(HES1

i+ 1
2 ,j
−HES1

i− 1
2 ,j
) − 1

∆y
(KES1

i,j+ 1
2
−KES1

i,j− 1
2
)

− 1

4∆x
(JV K⊺

i+ 1
2 ,j

QES,F

i+ 1
2 ,j

JV Ki+ 1
2 ,j
+ JV K⊺

i− 1
2 ,j

QES,F

i− 1
2 ,j

JV Ki− 1
2 ,j
)

− 1

4∆y
(JV K⊺

i,j+ 1
2

QES,G

i,j+ 1
2

JV Ki,j+ 1
2
+ JV K⊺

i,j− 1
2

QES,G

i,j− 1
2

JV Ki,j− 1
2
) .

(4.27)

Since the diffusion matrices QES,F

i± 1
2 ,j

,QES,G

i,j± 1
2

are positive semi-definite, this scheme satisfies the energy

decay property (4.11), resulting in an ES scheme.

4.4 A second-order energy stable scheme (ES2)

The ES1 scheme was derived by adding a first-order diffusion term to the second-order EC scheme. It
is thus natural to develop a second-order ES scheme by incorporating a suitably constructed, second-
order accurate diffusion term. This can be achieved through appropriate non-oscillatory second-order
polynomial reconstructions of the entropy variable. We follow the idea of [13, 22] to recover a non-
oscillatory piecewise linear reconstruction. Let V E

i,j and V W
i+1,j denote the second-order reconstructions

from the east and west, respectively, of the entropy variable V (xi+ 1
2
, yj). Similarly, let V N

i,j and V S
i,j+1

represent the second-order reconstructions from the north and south of the entropy variable V (xi, yj+ 1
2
).

I.e., if Ṽi,j(x, y) is the polynomial reconstruction of the entropy variable V in the cell Ii,j , then,

V E
i,j ∶= lim

x→xi+1/2
y→yj

Ṽi,j(x, y), V W
i,j ∶= lim

x→xi−1/2
y→yj

Ṽi,j(x, y), (4.28)

V N
i,j ∶= lim

x→xi
y→yj+1/2

Ṽi,j(x, y), V S
i,j ∶= lim

x→xi
y→yj−1/2

Ṽi,j(x, y). (4.29)
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Using these reconstructions, we can compute second-order accurate jumps of the entropy variable,

⟪V ⟫i+ 1
2 ,j
∶= V W

i+1,j −V E
i,j , ⟪V ⟫i,j+ 1

2
∶= V S

i,j+1 −V N
i,j . (4.30)

Using the second-order jumps in the energy stable fluxes, we obtain the ES2 fluxes,

FES2
i+ 1

2 ,j
∶= FEC

i+ 1
2 ,j
− 1

2
QES,F

i+ 1
2 ,j
⟪V ⟫i+ 1

2 ,j
, GES2

i,j+ 1
2
∶= GEC

i,j+ 1
2
− 1

2
QES,G

i,j+ 1
2

⟪V ⟫i,j+ 1
2
, (4.31)

where the positive definite matrices QES,F and QES,G are the same as those in the ES1 scheme (4.21).
The remaining part of this section describes how to compute V W

i+1,j ,V
E
i,j ,V

S
i,j+1,V

N
i,j in a manner that

ensures entropy stability.
The first step is to use a scaled version of the entropy variables as follows:

wE
i,j ∶= (TF )⊺i+ 1

2 ,j
Vi,j , wW

i,j ∶= (TF )⊺i− 1
2 ,j

Vi,j , wN
i,j ∶= (TG)⊺i,j+ 1

2

Vi,j , wS
i,j ∶= (TG)⊺i,j− 1

2

Vi,j , (4.32)

where the matrices TF ,TG are defined in (4.23). Next, we perform a second-order total variation-
diminishing (TVD) reconstruction of the scaled variable w at the cell interfaces

w̃E
i,j ∶=wE

i,j +
1

2
ϕ(θE

i,j) ○ ⟪w⟫i+ 1
2 ,j

, w̃W
i,j ∶=wW

i,j −
1

2
ϕ(θW

i,j) ○ ⟪w⟫i− 1
2 ,j

,

w̃N
i,j ∶=wN

i,j +
1

2
ϕ(θN

i,j) ○ ⟪w⟫i,j+ 1
2
, w̃S

i,j ∶=wS
i,j −

1

2
ϕ(θS

i,j) ○ ⟪w⟫i,j− 1
2
,

(4.33)

where the jump ⟪⋅⟫ is defined in (4.30), ○ denotes the Hadamard (elementwise) product on vectors, and
θi,j represents the difference quotients, defined by

θE
i,j ∶= ⟪w⟫i− 1

2 ,j
⊘ ⟪w⟫i+ 1

2 ,j
, θW

i,j ∶= ⟪w⟫i+ 1
2 ,j
⊘ ⟪w⟫i− 1

2 ,j
, (4.34)

θN
i,j ∶= ⟪w⟫i,j− 1

2
⊘ ⟪w⟫i,j+ 1

2
, θS

i,j ∶= ⟪w⟫i,j+ 1
2
⊘ ⟪w⟫i,j− 1

2
, (4.35)

where ⊘ is the Hadamard (elementwise) division between vectors. To preserve the TVD property, as
discussed in [13, 22], we select the function ϕ as the minmod limiter, defined by

ϕ(θ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0, θ < 0,
θ, 0 ≤ θ ≤ 1,
1, otherwise,

(4.36)

which operates elementwise on vector inputs. Finally, the desired reconstructions for V E
i,j ,V

W
i,j ,V

N
i,j ,V

S
i,j

can be computed by inverting the w-to-V map, respectively,

(TF )⊺i+ 1
2 ,j

V E
i,j ∶= w̃E

i,j , (TF )⊺i− 1
2 ,j

V W
i,j ∶= w̃W

i,j , (TG)⊺i,j+ 1
2

V N
i,j ∶= w̃N

i,j (TG)⊺i,j− 1
2

V S
i,j ∶= w̃S

i,j . (4.37)

The final ES2 scheme defined in (4.31) satisfies the desired properties.

Theorem 5 (ES2 scheme). The FV scheme (4.3), with the source term in (4.12) and the diffusive
numerical fluxes FES2

i+ 1
2 ,j

,GES2
i,j+ 1

2

defined in (4.31), is a second-order, well-balanced, and energy stable

scheme.

The second-order accuracy results from the fact that the jumps ⟪V ⟫i+ 1
2 ,j

and ⟪V ⟫i,j+ 1
2
for each i, j

are computed by using second-order accurate reconstructions. The well-balanced property can be shown
in the same manner as in the ES1 scheme, following from the definition of Vi,j and the assumption that
the stochastic lake-at-rest initial data implies that the jumps are zero. To show the energy stability
property, we refer to the following lemma from [22] adapted to the two-dimensional case as stated below.
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Lemma 8 ([22], Lemma 3.2). For each i, j, if there exists positive diagonal matrices Πi+ 1
2 ,j
≥ 0 and

Πi,j+ 1
2
≥ 0, s.t., the second-order jumps satisfy,

⟪V ⟫i+ 1
2 ,j
= ((TF )⊺i+ 1

2 ,j
)
−1

Πi+ 1
2 ,j
(TF )⊺i+ 1

2 ,j
JV Ki+ 1

2 ,j
,

⟪V ⟫i,j+ 1
2
= ((TG)⊺i,j+ 1

2

)
−1

Πi,j+ 1
2
(TG)⊺i,j+ 1

2

JV Ki,j+ 1
2
,

(4.38)

then the scheme (4.3) with fluxes Fi+ 1
2 ,j
= FES2

i+ 1
2 ,j

and Gi,j+ 1
2
= GES2

i,j+ 1
2

is an ES scheme.

The proof of this lemma, which we omit, is accomplished by multiplying the FV scheme (4.3) by
V ⊺i,j and following a similar approach as it in the proof of Lemma 7. We turn to complete the proof of
Theorem 5.

Proof of Theorem 5. By Lemma 8, it suffices to establish the equalities (4.38) to demonstrate the ES
property of the ES2 scheme. The definition of (4.33) implies

⟪w̃⟫li+ 1
2 ,j
= (1 − 1

2
ϕ((θW

i+1,j)l) −
1

2
((θE

i,j)l))⟪w⟫li+ 1
2 ,j

,

⟪w̃⟫li,j+ 1
2
= (1 − 1

2
ϕ((θS

i,j+1)l) −
1

2
((θN

i,j)l))⟪w⟫li,j+ 1
2
,

(4.39)

where l denotes the index of the components of the corresponding vectors. The equality above, together
with the definitions in (4.32), (4.37), and the linearity of ⟪⋅⟫ and J⋅K, implies (4.38) with the diagonal
matrices Πi+ 1

2 ,j
and Πi,j+ 1

2
defined by

(Πi+ 1
2 ,j
)l,l = 1 −

1

2
ϕ((θW

i+1,j)l) −
1

2
((θE

i,j)l), (Πi,j+ 1
2
)l,l = 1 −

1

2
ϕ((θS

i,j+1)l) −
1

2
((θN

i,j)l). (4.40)

Note that the diagonal matrices Πi+ 1
2 ,j

and Πi,j+ 1
2
are positive semi-definite, since the minmod

limiter satisfies 0 ≤ ϕ(θ) ≤ 1. Consequently, the ES2 scheme is energy stable, completing the proof.

5 Algorithmic details and pseudocode

We have presented energy conservative and energy stable schemes (EC, ES1, ES2) for the semi-discrete
form (4.3), including the numerical construction and theoretical results. We now discuss details of the
corresponding fully discrete algorithms. Complete algorithmic pseudocode is given in algorithm 1.

5.1 Desingularization

In the construction of numerical fluxes, the computation of ui,j ,vi,j requires (P(hi,j))
−1
, which is valid

when P(hi,j) is positive-definite. However, this matrix could be ill-conditioned in some situations.
To mitigate error from ill-conditioned operations, we employ a desingularization procedure introduced
in [33], whose stochastic variant was introduced in [11, 12, 13]. Suppose P(hi,j) has the eigenvalue
decomposition,

P(hi,j) =QΠQ⊺, (5.1)

where Π = diag(π1, . . . , πK) is a diagonal positive matrix. Then the desingularization procedure ap-

proximates (P(hi,j))
−1
qi,j by perturbing the eigenvalues πk to regularize the velocities:

ui,j =QΠ̃−1Q⊺qx
i,j , Π̃ = diag(π̃1, . . . , π̃K), π̃i =

√
π4
i +max{π4

i , ϵ
4}

√
2πi

, (5.2)

vi,j =QΠ̃−1Q⊺qy
i,j , Π̃ = diag(π̃1, . . . , π̃K), π̃i =

√
π4
i +max{π4

i , ϵ
4}

√
2πi

, (5.3)
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where ϵ is a small positive constant. To ensure the consistency of the scheme, the discharge variables
must be recomputed when the desingularization procedure is activated,

qx
i,j ←Ð P(hi,j)ui,j , qy

i,j ←Ð P(hi,j)vi,j . (5.4)

5.2 Hyperbolicity-preserving criterion

The hyperbolicity and existence of the entropy flux pair require that P(ĥ) is positive-definite, i.e.,
P(ĥ) > 0. This corresponds to the condition P(hi,j) > 0 holding for each cell Ii,j . While this may be
true at the current time, extra conditions must be imposed that this is true at the next time step. A
sufficient condition, [11, Theorem 3.2], is the following condition for every n ∈ [N]:

ĥi,j(ξn) ∶=
K

∑
k=1

(hi,j)kϕk(ξn) > 0, hi,j = ((hi,j)1, . . . , (hi,j)K)
⊺
, (5.5)

where {ξn}Nn=1 is a nodal set in Rd for a positive-weight quadrature rule with sufficient accuracy relative
to the ξ-polynomial space P = span(ϕ1, . . . , ϕK). We enforce (5.5) by restricting the time step size in
the time evolution procedure, as is done in [11, Lemma 4.2]. Suppose (5.5) is satisfied at the current
time level, and the forward Euler method is applied. To enforce (5.5) in the next time level, we require

∆t < λ ∶=min
i,j

min
n∈[N]

RRRRRRRRRRRRRRRRR

ĥi,j(ξn)
F̂h

i+ 1
2
,j
(ξn)−F̂h

i− 1
2
,j
(ξn)

∆x
+
Ĝh

i,j+ 1
2

(ξn)−Ĝh

i,j− 1
2

(ξn)

∆y

RRRRRRRRRRRRRRRRR

, (5.6)

where

F̂h
i+ 1

2 ,j
(ξ) ∶=

K

∑
k=1

(Fh
i+ 1

2 ,j
)
k
ϕk(ξ), Fi+ 1

2 ,j
= ((Fh

i+ 1
2 ,j
)⊺, (Fqx

i+ 1
2 ,j
)⊺, (Fqy

i+ 1
2 ,j
)⊺)⊺ ∈ R3K (5.7)

Ĝhi,j+ 1
2
(ξ) ∶=

K

∑
k=1

(Ghi,j+ 1
2
)
k
ϕk(ξ), Gi,j+ 1

2
= ((Ghi,j+ 1

2
)⊺, (Gq

x

i,j+ 1
2

)⊺, (Gq
y

i,j+ 1
2

)⊺)⊺ ∈ R3K . (5.8)

In addition to enforcing a global time step restriction across all cells for hyperbolicity, we must also
ensure that ∆t satisfies the wave speed CFL condition to account for the hyperbolic nature of the
system, cf. [11, Equation (4.15)].

5.3 Adaptive time step size

The time step restriction for the hyperbolicity-preserving procedure (5.6) is derived by assuming a for-
ward Euler time integration method. We can extend this to higher-order strong stability-preserving
Runge-Kutta (SSP-RK) methods, which are convex combinations of forward Euler methods with mul-
tiple intermediate stages [27]. We employ the adaptive time-stepping procedure in [6], which allows
Forward Euler time step restrictions to be applied to SSP-RK procedures. Computationally, the pro-
cedure computes updates of the time step restriction at each intermediate stage of the RK process.

5.4 Numerical imposition of boundary conditions

On a rectangular computational domain [a, b] × [c, d], let Qi,j , i, j ∈ [M], denote the (numerical) cell
averages of any physical quantity on the mesh. Periodic boundary conditions are straightforward to
implement,

Qi,0 = Qi,M , Qi,1 = Qi,M+1, Q0,j = QM,j , Q1,j = QM+1,j , ∀ i, j ∈ [M]

Periodic boundary conditions can be unphysical, and one way to mitigate finite-domain effects is to
impose “outflow” boundary conditions that emulate physical continuation of the domain beyond the
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computational grid. A simple strategy for outflow boundary condition is to set ghost cell values through
extrapolation from interior cells. The straightforward zeroth-order extrapolation uses a constant func-
tion for the extrapolation, i.e., sets as boundary conditions,

Qi,0 = Qi,1, Qi,M+1 = Qi,M , Q0,j = Q1,j , QM+1,j = QM,j , ∀ i, j ∈ [M] (5.9)

Higher-order extrapolation can improve accuracy, but zeroth-order extrapolation is often preferred for
stability [39].

5.5 Measuring energy change through augmented energy

Definition 2 that labels schemes as energy conservative and energy stable relies on such properties hold-
ing in the interior of the computational domain, but does not guarantee energy conservation/stability if
boundary fluxes work to increase energy inside the domain. In such cases, energy will increase through
no fault of the scheme but instead as a natural physical evolution of the model. Such situations can
occur even for standard procedures that implement outflow boundary conditions. We discuss this in
more detail below.

Under periodic boundary conditions, summing the equality/inequality in the definition of the EC
or ES scheme yields,

∑
i,j∈[M]

d

dt
Ei,j(t) = 0, or, ∑

i,j∈[M]

d

dt
Ei,j(t) ≤ 0, (5.10)

respectively. With outflow boundary conditions, the summation of the semi-discrete formula differs
from the periodic case. For example, in a rectangular computational domain with outflow boundary
conditions on all four sides, summing the energy change across all cells to enforce energy conservation
or stability corresponds to the respective assertions,

∑
i,j∈[M]

d

dt
Ei,j(t) =

1

∆x
∑

j∈[M]

(H 1
2 ,j
−HM+ 1

2 ,j
) + 1

∆y
∑

i∈[M]

(Ki, 12
−Ki,M+ 1

2
), (EC) (5.11a)

∑
i,j∈[M]

d

dt
Ei,j(t) ≤

1

∆x
∑

j∈[M]

(H 1
2 ,j
−HM+ 1

2 ,j
) + 1

∆y
∑

i∈[M]

(Ki, 12
−Ki,M+ 1

2
), (ES) (5.11b)

From these expressions, we see that since the boundary fluxes are imposed by a relatively arbitrary
problem setup (outflow boundary conditions, Dirichlet boundary conditions, etc.), then we cannot
expect the above equality or inequality to result in non-increasing energy, regardless of the scheme
developed. This is a concern that arises in practice: Consider the SWE SG system in one spatial
dimension (formally, from the two-dimensional formulation one can set all y-derivatives to 0 and make
all quantities y-independent), with the following piecewise linear bottom topography B, water velocity
u, and water surface w:

B(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0, x < 0.5,
0.1x − 0.05, 0.5 ≤ x ≤ 1.5,
0.1, otherwise,

u(x,0) = 0.3, w(x,0) = 1, (5.12)

over the computational domain is [0,2]. We impose the one-dimensional version of the outflow boundary
conditions (5.9) on both sides of the domain, and we integrate up to terminal time T = 0.07. The results
are shown in Figure 1, and it is evident that the relative energy of the three schemes (EC, ES1, ES2) is
increasing, see the bottom-left plot. I.e., this increase in relative energy is caused by the fact that this
setup results in the total energy of the system increasing due to the outflow boundary conditions.

This increase in energy for the true solution makes it difficult to evaluate the effectiveness of the EC
and ES schemes. An alternative measure of energy is the augmented energy, described below, which
accounts for boundary effects on the total energy of the system. If H1 and HM denote the entropy
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Figure 1: Illustration of energy versus augmented energy that incorporates energy fluxes at the boundary. Top left: Bottom
topography B corresponding to (5.12). Top right: Mean of the water surface w = h +B at terminal time T = 0.07. Bottom left:

The standard relative energy
E(t)−E(0)

E(0) increases in time for any accurate scheme due to influx of energy at the boundaries.

Bottom right: Measuring the relative change in augmented energy
Ẽ(t)−Ẽ(0)

Ẽ(0) that offsets energy change due to boundary effects

restores expected behavior for relative change of energy when using EC and ES schemes.

flux values at the one-dimensional boundary values, then we define the augmented energy Ẽ over the
computational domain to evolve as,

d

dt
Ẽ(t) ∶=

M

∑
i=1

d

dt
Ei(t) −

1

∆x
(H1 −HM), Ẽ(0) =

M

∑
i=1

Ei(0). (5.13)

I.e., the augmented energy evolves according to the sum over all cells of the energy derivative, along
with the energy change associated with the entropy boundary fluxes. The equation (5.13) can be time
integrated since the right-hand side can be evaluated. By evaluating the relative augmented energy for
the setup (5.12), shown in the bottom right plot of Figure 1, we observe that the EC scheme exhibits no
(augmented) energy change, as expected, and the ES1 and ES2 schemes exhibit small energy decrease,
with ES2 less dissipative than ES1, again as expected.

In this paper, for two-dimensional numerical examples, we generally implement outflow boundary
conditions using zero-order extrapolation on the left and right boundaries and periodic boundary con-
ditions on the upper and lower boundaries, resulting in the derivative of the augmented energy Our
two-dimensional numerical examples in the next section largely use periodic boundary conditions on
the upper and lower boundaries and zeroth-order outflow boundary conditions on the left and right
boundaries, corresponding to the augmented energy,

d

dt
Ẽ(t) ∶=

M

∑
i,j=1

d

dt
Ei,j(t) −

M

∑
j=1

1

∆x
(H1,j −HM,j). (5.14)

6 Numerical experiments

We will illustrate the performance of our EC and ES schemes through various examples, investigating
convergence rates, energy conservation and decay properties, the well-balanced property, and the ability
to handle multivariate random variables.
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Algorithm 1 Pseudocode of the fully discrete EC/ES schemes for the 2D SG SWE

Input: Scheme type: scheme = EC, ES1, or ES2.
Input: Bottom topography B, initial data U at t = 0, terminal time T .
Initialize: Get PCE coefficients Ui,j with given polynomial index set Λ, set t = 0.
while t < T do

Compute Bi,j from B for all i, j.
Compute ui,j ,vi,j for all i, j.
Compute FEC

i+ 1
2 ,j

,GEC
i,j+ 1

2

, and Si,j for all i, j, by (4.12).

if scheme is EC then
Fi+ 1

2 ,j
← FEC

i+ 1
2 ,j

,Gi,j+ 1
2
← GEC

i,j+ 1
2

, for all i, j.

else for all i, j
Compute entropy variable Vi,j by (4.5).

Compute QES,F

i+ 1
2 ,j

,QES,G

i,j+ 1
2

for all i, j by (4.24a), (4.24b).

if scheme is ES1 then
Compute Fi+ 1

2 ,j
← FES1

i+ 1
2 ,j

,Gi,j+ 1
2
← GES1

i,j+ 1
2

by (4.21) using FEC
i+ 1

2 ,j
,GEC

i,j+ 1
2

,Vi,j ,

and QES,F

i+ 1
2 ,j

,QES,G

i,j+ 1
2

.

else if scheme is ES2 then
Construct V E

i,j ,V
W
i,j ,V

N
i,j ,V

S
i,j by (4.32), (4.33), and (4.37).

Compute Fi+ 1
2 ,j
← FES2

i+ 1
2 ,j

,Gi,j+ 1
2
← GES2

i,j+ 1
2

by (4.31) using FEC
i+ 1

2 ,j
,GEC

i,j+ 1
2

,V E
i,j ,V

W
i,j ,V

N
i,j ,V

S
i,j , and QES,F

i+ 1
2 ,j

,QES,G

i,j+ 1
2

.

end if
end if
Initialize λ and ∆t by (5.6) and CFL condition.
Determine ∆t using the adaptive time step size procedure in Section 5.3.
Use a SSP RK method with ∆t determined adaptively, updating hi,j ,q

x
i,j ,q

y
i,j .

t← t +∆t
end while
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Let ξ be a one-dimensional random variable from the Beta parametric family,

ξ ∼ Beta(β + 1, α + 1) on [−1,1] ∶ ρ(ξ)∝ (1 − ξ)α(1 + ξ)β , ξ ∈ [−1,1], (6.1)

Hence, the parameters α,β > −1 can be chosen freely and control the mass concentration at ξ = 1 and
ξ = −1, respectively. For this density ρ, the associated orthonormal polynomial basis is the family of
Jacobi polynomials with parameters (α,β). In particular, α = β = 0 corresponds to the uniform distribu-
tion U(−1,1), with Legendre polynomial basis functions. We will also consider a two-dimensional ran-
dom variable ξ = (ξ(1), ξ(2)) with two independent and identically distributed one-dimensional random

variables ξ(1), ξ(2), i.e., ξ(1), ξ(2)
iid∼ Beta(β + 1, α + 1). In this case the density is ρ(ξ) ∶= ρ(ξ(1))ρ(ξ(2)),

and the orthonormal basis is obtained by tensorizing one-dimensional orthonormal polynomials.
For all two-dimensional examples, we implement outflow boundary conditions using zero-order ex-

trapolation on the left and right boundaries and periodic boundary conditions on the upper and lower
boundaries. To compare the energy conservation and decay properties of our EC and ES schemes,
we will measure both the relative energy and the augmented relative energy change, with the latter
introduced in section 5.5:

relative change in (original) energy = E(t) −E(0)
E(0)

, (6.2)

relative change in augmented energy = Ẽ(t) − Ẽ(0)
Ẽ(0)

, (6.3)

where E(t) = ∑i,j Ei,j(t).
Throughout this section on numerical experiments, we assume the gravitational constant g = 1 and

generally use K = 4 terms in the PCE procedure, except in the accuracy test and in the example
involving a two-dimensional random variable. For the visualization of results, we will plot the water
surface w ∶= h+B instead of the conservative variable h corresponding to the water height. We generally
apply the first- and second-order energy stable schemes (ES1, ES2) in the following numerical examples
and further apply the second-order energy conservative scheme (EC) in the accuracy test.

6.1 Accuracy test for the energy conservative and the energy stable schemes

We begin by examining the order of accuracy of the proposed EC and ES schemes for the two-
dimensional stochastic shallow water system. This test is a stochastic modification of the test originally
developed in [4]. The initial conditions for the water surface and velocities are deterministic and defined
as follows:

w(x, y,0, ξ) = 1, u(x, y,0, ξ) = 0.3, v(x, y,0, ξ) = 0, (6.4)

where w represents the water surface, and u and v are the velocities in the x- and y- directions,
respectively. Consider a stochastic elliptic-shaped hump bottom

B(x, y, ξ) = 0.5 exp(−25(x − 1)2 − 50(y − 0.5)2) + 0.1(ξ + 1), (6.5)

where ξ ∼ U(−1,1). The computational domain is [0,2] × [0,1]. A reference solution is computed on
a 800 × 800 uniform rectangular grid for each scheme. For the time evolution solver, we utilize the
third-order Strong Stability-Preserving (SSP) Runge-Kutta (RK3) method [27].

We illustrate the order of accuracy of our schemes using the water height h by computing the error
between the reference solution and the numerical test solution with the L1 norm in physical space and
the L2 norm in stochastic space.

Error(hd) = ∥hd(x, y, t, ξ) − href(x, y, t, ξ)∥L1(D;L2
ρ(Rd)),

∥h(x, y, t, ξ)∥L1(D;L2
ρ(Rd)) ∶= ∫

D
∥h(x, y, t, ξ)∥L2

ρ
dxdy

(6.6)
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The contour plots of the reference solution for the mean of water surface and its standard deviation
at t = 0.07 are shown in Figure 2.

Figure 2: Results for section 6.1: Contours for the water surface of the reference solution of ES2. Left: mean. Right: standard
deviation. T = 0.07.

We compute the orders of convergence for the numerical solutions with K = 2, T = 0.07, as summa-
rized in Table 1. The results indicate that the EC scheme has the smallest error and the highest order
of accuracy, while the ES1 scheme has the largest error and the lowest order of accuracy. All schemes
yield results consistent with theoretical expectations. We avoid using larger values of K due to the
occurrence of oscillations in stochastic space, which leads to instability in the higher modes of the PCE.
This is a known general problem of the SG method when used for the hyperbolic conservation/balance
laws problems, e.g. [41] and it will be part of our future research to address it.

Scheme Grid size Error Order

ES1

100 × 100 2.1447e-04
200 × 200 7.3671e-05 1.5417
400 × 400 2.2557e-05 1.7075

ES2

100 × 100 1.5434e-04
200 × 200 3.9852e-05 1.9534
400 × 400 1.0528e-05 1.9203

EC

100 × 100 1.4880e-04
200 × 200 3.6890e-05 2.0121
400 × 400 8.8995e-06 2.0514

Table 1: Accuracy test of section 6.1: Order of convergence for K = 2, T = 0.07. Reference solution
computed with grid size 800 × 800.

We investigated the EC scheme in this accuracy test because it produces smooth solutions for short
time evolution up to T = 0.07. However, in the following numerical examples, we avoid using the EC
scheme, as it introduces unphysical numerical oscillations into non-smooth solutions since energy should
be dissipated across discontinuities, similar to the observations reported for the models in 1D physical
space [13].

6.2 Gaussian-shape hump with stochastic bottom

We consider the example with a random variable applied to the position of the hump in the bottom
topography,

B(x, y, ξ) = 0.8 exp(−5(x − 0.9 + 0.1ξ)2 − 50(y − 0.5)2), ξ ∼ U(−1,1). (6.7)
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The discontinuous initial water surface is given by

w(x, y,0, ξ) = {
1.01, 0.05 < x < 0.15,
1, otherwise,

(6.8)

with zero initial velocities u(x, y,0) = v(x, y,0) = 0.
The computational domain is [0,2] × [0,1]. The test is a modification of the tests from [38, 4,

12]. We compute the numerical solutions of the ES schemes on a 200 × 200 mesh grid at times t =
0.6,0.9,1.2,1.5,1.8. The results include contour plots representing the mean water surface, accompanied
by disk glyphs whose radius is proportional to the uncertainties at the corresponding cells. According
to the plots in Figure 3, the water propagates to the right initially. After interacting with the hump,
the water splits and propagates in all directions, generating more wave structures. The uncertainties
are concentrated near the peak of the water surface until the water reaches the hump, after which
they spread out along the wave structure. The results in Figure 3 and 4 show that both the ES1
and ES2 schemes dissipate energy and produce similar wave structures. In addition, the ES2 scheme
achieves higher resolution and with less energy dissipation than the ES1 scheme which delivers a more
smeared/diffuse solution, as theoretically expected.

6.3 Gaussian-shape hump with stochastic initial water surface

To demonstrate the robustness of our schemes, we consider a similar example of the Gaussian-shape
hump with a stochastic initial water surface, as discussed in Section 6.2. Consider the deterministic
bottom topography

B(x, y) = 0.8 exp(−5(x − 0.9)2 − 50(y − 0.5)2), (6.9)

and a stochastic initial water surface

w(x, y,0, ξ) = {
1 + 0.01(ξ + 1), 0.05 < x < 0.15,
1, otherwise,

(6.10)

where ξ ∼ U(−1,1), and with zero initial velocities u(x, y,0) = v(x, y,0) = 0. We implement the same
settings as described in Section 6.2 and present the results in Figures 5 and 6. The plots display similar
contours of the mean water surface as those in the previous example in Section 6.2. Both the ES1
and ES2 schemes demonstrate energy dissipation; however, the ES2 scheme provides better resolution
and less energy dissipation compared to the ES1 scheme. Additionally, the uncertainties are more
uniformly distributed across the water surface in proportion to the mean water surface, as compared to
the distribution of uncertainties in Section 6.2.

6.4 A submerged flat plateau

We consider the deterministic initial water surface with a small deterministic perturbation of size 10−4

as follows:

w(x, y,0, ξ) = {
1.0001, − 0.4 < x < −0.3,
1, otherwise,

u(x, y,0) = v(x, y,0) = 0, (6.11)

and with a stochastic bottom function

B(x, y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0.9998, r ≤ 0.1,
9.997(0.2 − r) + 0.0001(ξ + 1), 0.1 < r ≤ 0.2,
0.0001, otherwise,

(6.12)

where r ∶=
√
x2 + y2 + 0.0001 and ξ ∼ U(−1,1).
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Figure 3: Results for section 6.2. Mean of water surface. Disk-glyph over mean contours, where the radii of the disks indicate
the magnitude of the standard deviation. Left: ES1, the maximum standard deviation is 4.6524e-04, 7.3933e-04, 3.5168e-04,
1.3633e-04, 1.0856e-04, respectively. Right: ES2, the maximum standard deviation is 1.0398e-03, 2.1739e-03, 8.9851e-04,
3.4970e-04, 2.9730e-04, respectively. 200 × 200, t = 0.6,0.9,1.2,1.5,1.8.

24



Figure 4: Results for section 6.2. Left: relative change in energy. Right: relative change in augmented energy.

The bottom is a flat plateau close to the water surface with a small perturbation of magnitude 10−4.
This topography is continuous but lacks smoothness in the physical domain. The test is a modification
of the test from [4, 12]. We compute the solutions of the ES schemes over the computational domain
[−0.5,0.5] × [−0.5,0.5] at times t = 0.2,0.35,0.5,0.65. The initial deterministic perturbation generates
two waves. The left-going wave travels out of the computational domain, while the right-going wave
interacts with the plateau, leading to complex wave patterns as the interaction progresses. The results in
Figure 7 demonstrate that our schemes effectively capture the stochastic lake-at-rest solution, indicating
that they are well-balanced. Both the ES1 and ES2 schemes dissipate energy, with the ES2 scheme
providing higher resolution and less energy dissipation compared to the ES1 scheme. Note that the
uncertainties of the ES1 scheme are not visible, since the ES1 standard deviation is much smaller than
that of the ES2 scheme.

The initial deterministic perturbation on the water surface is 10−4. Throughout the time evolu-
tion, the maximum mean water surface displacement from the steady state remains within this initial
perturbation threshold, and the standard deviation remains small. These results demonstrate the ca-
pability of both the ES1 and ES2 schemes to accurately capture the lake-at-rest solution under small
perturbations.

For comparison, we also present a non-well-balanced ES2 scheme by modifying the numerical source
term to

Si,j =
⎛
⎜⎜
⎝

0

− g
2∆x
P(hi,j)(JBKi+ 1

2 ,j
+ JBKi− 1

2 ,j
)

− g
2∆y
P(hi,j)(JBKi,j+ 1

2
+ JBKi,j− 1

2
)

⎞
⎟⎟
⎠
, (6.13)

corresponding to a central differencing scheme for the derivative of bottom topography.
We can observe from Figure 9 that the wave structure produced by the non-well-balanced ES2

scheme differs significantly from that of the well-balanced schemes in Figure 7. The non-well-balanced
scheme generates substantially larger perturbations compared to the well-balanced solutions. Note that
even with mesh refinement, the non-well-balanced scheme cannot produce physically accurate wave
structure, and the perturbations remain larger than the initial value throughout the time evolution.
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Figure 5: Results for section 6.3. Mean of water surface. Disk-glyph over mean contours, where the radii of the disks indicate
the magnitude of the standard deviation. Left: ES1, the maximum standard deviation is 1.8216e-03, 1.9375e-03, 1.5528e-03,
1.0162e-03, 8.2437e-04, respectively. Right: ES2, the maximum standard deviation is 2.6787e-03, 3.2736e-03, 2.5036e-03,
1.5027e-03, 1.3321e-03, respectively. 200 × 200, t = 0.6,0.9,1.2,1.5,1.8.
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Figure 6: Results for section 6.3. Left: relative change in energy. Right: relative change in augmented energy.

6.5 Perturbation to lake-at-rest

We consider another example of a perturbation to lake-at-rest solution with a stochastic initial water
surface

w(x, y,0, ξ) = {
1 + 0.001(ξ + 1), ∣xy∣ ≤ 0.05,
1, otherwise,

u(x, y,0) = v(x, y,0) = 0, (6.14)

and with the deterministic bottom topography

B(x, y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0.25(cos(5π(xy + 0.35)) + 1), − 0.55 < xy < −0.15,
0.125(cos(10π(xy − 0.35)) + 1), 0.25 < xy < 0.45,
0, otherwise.

(6.15a)

The computational domain is [−1,1] × [−1,1] and ξ ∼ U(−1,1). The test is a 2D modification of the
test from [8, 13].

The results presented in Figure 12 indicate that the water propagates towards the four vertices of
the rectangular computational domain. The wave moves slower after reaching the raised bottom. As in
previous examples, both ES1 and ES2 schemes are well-balanced and produce a similar wave structure,
with the ES2 scheme creating a more accurate solution with a higher resolution and less diffusion.
Furthermore, uncertainties are distributed in proportion to the mean water surface in the ES schemes,
as they originate from the initial water surface rather than the bottom topography.

To investigate the impact of the bottom topography bump on the results, we slightly modify the
bottom topography to

B(x, y) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0.45(cos(5π(xy + 0.35)) + 1), −0.55 < xy < −0.15
0.125(cos(10π(xy − 0.35)) + 1), 0.25 < xy < 0.45
0, otherwise,

(6.15b)

and plot results for the ES1 and ES2 schemes in fig. 13. Comparing the solutions in Figure 13 with
those in Figure 12 at T = 0.6 and T = 0.8, one can observe the significant influence of the bottom
topography on the wave structure.

For comparison, we also simulate results using an ES2 scheme that employs the non-well-balanced
source term discretization in (6.13). From the results shown in Figure 14, the non-well-balanced ES2
scheme produces a different wave structure and generates a larger displacement of the water surface
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Figure 7: Results for section 6.4. Mean of water surface. Disk-glyph over mean contours, where the radii of the disks indicate
the magnitude of the standard deviation. Left: ES1, the maximum standard deviation is 1.7485e-08, 1.9120e-07, 1.3268e-07,
1.0392e-07, respectively. Right: ES2, the maximum standard deviation is 6.6484e-07, 1.8990e-06, 1.4625e-06, 8.1986e-07,
respectively. 200 × 200, t = 0.2,0.35,0.5,0.65.
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Figure 8: Results of section 6.4. Left: relative change in energy. Right: relative change in augmented energy.

Figure 9: Results for section 6.4. Mean of water surface. Non-well-balanced ES2 scheme. 50 × 50, t = 0.2,0.35,0.5,0.65.
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Figure 10: Results for section 6.5. Left: initial water surface. Right: bottom topography. 200 × 200

Figure 11: Results for section 6.5. Left: relative change in energy. Right: relative change in augmented energy. 200 × 200
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Figure 12: Results for section 6.5 with bottom topography B given by (6.15a). Contour plots for the water surface. Disk-glyph
over mean contours, where the radii of the disks indicate the magnitude of the standard deviation. Left: ES1, the maximum
standard deviation is 5.7522e-04, 4.6740e-04, 4.8587e-04, 3.9092e-04. Right: ES2, the maximum standard deviation is
5.7687e-04, 5.0798e-04, 5.8621e-04, 5.1600e-04. The mesh is 200 × 200 with snapshots in time shown at T = 0.2,0.4,0.6,0.8.
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Figure 13: Results for section 6.5 with bottom topography B given by (6.15b). Contour plots for the water surface. Disk-glyph
over mean contours, where the radii of the disks indicate the magnitude of the standard deviation. Left: ES1, the maximum
standard deviation is 5.7522e-04, 4.8313e-04, 5.9729e-04, 4.0329e-04. Right: ES2, the maximum standard deviation is
5.7688e-04, 5.2388e-04, 7.0756e-04, 5.4857e-04. The mesh is 200 × 200 with snapshots in time shown at T = 0.2,0.4,0.6,0.8.
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compared to the well-balanced ES1 and ES2 schemes. Again, note that refining the mesh does not
produce the accurate wave structure, and the perturbations during the time evolution are still larger
than the initial perturbation for the non-well-balanced scheme.

Figure 14: Results for section 6.5. Mean of water surface. Non-well-balanced ES2 scheme. 50 × 50, t = 0.2,0.4,0.6,0.8.

6.6 Gaussian-shape hump with two-dimensional random variable

As a final test, we consider a two-dimensional in the stochastic space variant of the example used for
the accuracy test provided in Section 6.1, with a deterministic initial water surface

w(x, y,0, ξ) = 1, u(x, y,0, ξ) = 0.3, v(x, y,0, ξ) = 0, (6.16)

and a stochastic bottom

B(x, y, ξ) = 0.5 exp(−12.5(ξ1 + 1)(x − 1)2 − 25(ξ2 + 1)(y − 0.5)2). (6.17)

Here ξ = (ξ1, ξ2) is a two-dimensional random vector with independent components, where ξ1 has a
Beta(β +1, α+1) distribution on [−1,1] with parameters (α,β) = (3,1), and ξ2 is uniformly distributed
on [−1,1]. The uncertainties are in the width of the Gaussian-shape hump. To simulate the SG SWE
system, we use K1 =K2 = 3 polynomial terms for the parameters ξ1 and ξ2, resulting in a tensor-product
space of polynomials with dimension K = K1K2 = 9. We compute solutions for (x, y) ∈ [0,2] × [0,1]
up to time T = 0.07. Due to the effect of the two-dimensional random variable, the solution in Figure
15 has a more complex structure compared to the structure of the solution in the test in Figure 2.
The largest uncertainties are observed near the peak and bottom of the mean water surface, while the
smallest uncertainties occur in the region between them. The energy plots in Figure 16 demonstrate
that measuring augmented energy is necessary to account for energy-related boundary effects in this
example.
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Figure 15: Results for section 6.6. Contour plots for the water surface. Disk-glyph over mean contours, where the radii of the
disks indicate the magnitude of the standard deviation. Left: ES1, the maximum standard deviation is 9.8031e-03. Right: ES2,
the maximum standard deviation is 9.9456e-03. 100 × 100, T = 0.07.

Figure 16: Results for section 6.6. Left: relative change in energy. Right: relative change in augmented energy. 100 × 100.
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7 Conclusion

In this work we derived an entropy flux pair for the two-dimensional hyperbolicity-preserving and
positivity-preserving SG SWE system developed in [12]. The entropy flux pair facilitates the formulation
of entropy admissibility criteria to obtain the desired physical solution among non-unique weak solutions.
Using this entropy pair, we constructed second-order energy conservative and first- and second-order
energy stable finite volume schemes for the two-spatial-dimensional SG SWE, with the well-balanced
property. We presented several numerical experiments demonstrating the efficiency and robustness of
our schemes. Currently, our schemes are limited to second-order spatial accuracy; however, they can
be extended to higher orders by developing higher-order energy conservative finite volume schemes,
more accurate diffusion operators, or employing discontinuous Galerkin methods. Another possibility
for future research is to extend the developed framework to models associated with dry/wet interfaces.
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A Proof of theorem 2
Theorem 2 is a direct result of convexity of the function E(Û), proven in appendix A.2, and also of the fact that (E,H,K)
satisfy the companion balance law, proven in appendix A.3. The proofs of these results require the technical result of
lemma 1, so we begin with that result.

A.1 Proof of lemma 1
The proof is based on the calculations in Lemma 3.1 of [13], where the partial derivative of the inverse of a parameterized
matrix is computed. Let ĥl be an arbitrary component of ĥ, then compute the partial derivative

∂P−1(ĥ)
∂ĥl

= −P
−1
(ĥ)

∂P(ĥ)

∂ĥl

P
−1
(ĥ) = −P−1(ĥ)MlP

−1
(ĥ). (A.1)

Multiply q̂x on both sides, then

∂û

∂ĥl

=
∂P−1(ĥ)

∂ĥl

q̂x = −P−1(ĥ)MlP
−1
(ĥ)q̂x = −P−1(ĥ)Mlû, (A.2)

resulting in
∂û

∂ĥ
= −P

−1
(ĥ)[M1û, . . . ,MK û]

(2.9)
= −P

−1
(ĥ)P(û). (A.3)

Similarly, we also get
∂v̂

∂ĥ
= −P

−1
(ĥ)P(v̂). (A.4)

In addition, by definition (2.14), it is straightforward that

∂û

∂q̂x
=

∂v̂

∂q̂y
= P

−1
(ĥ),

∂v̂

∂q̂x
=

∂û

∂q̂y
= 0. (A.5)

This completes the proof.

A.2 Proof of lemma 2
The proof is straightforward and follows from computing the Hessian to show that it is positive definite. Recall the
entropy function,

E(Û) =
1

2
((q̂x)⊺û + (q̂y)⊺v̂) +

1

2
g∥ĥ∥2 + gĥ⊺B̂, (A.6)

where we denote the terms separately,

f1 ∶=
1

2
(q̂x)⊺û, f2 ∶=

1

2
(q̂y)⊺v̂, f3 ∶=

1

2
g∥ĥ∥2 + gĥ⊺B̂. (A.7)

By Lemma 1, we compute the first-order partial derivatives of f1,

∂f1

∂ĥ
=
1

2
(q̂x)⊺

∂û

∂ĥ

(3.9)
= −

1

2
(q̂x)⊺P−1(ĥ)P(û) = −

1

2
(P
−1
(ĥ)q̂x)

⊺
P(û) = −

1

2
û⊺P(û),

∂f1

∂q̂x
(3.9)
= û⊺,

∂f1

∂q̂y
= 0,

(A.8)

and the second-order partial derivatives,

∂2f1

∂ĥ2
= −

1

2

∂

∂ĥ
(û⊺P(û)) (3.9)

= P(û)P−1(ĥ)P(û),

∂2f1

∂ĥ∂q̂x
(3.9)
= −P(û)P−1(ĥ)

∂2f1

∂q̂x
2

(3.9)
= P

−1
(ĥ),

(A.9)
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with the remaining elements in the Hessian of f1 equal to zero, i.e.,

∂2f1

∂Û2
=
⎛
⎜
⎝

P(û)P−1(ĥ)P(û) −P(û)P−1(ĥ) 0

−P−1(ĥ)P(û) P−1(ĥ) 0
0 0 0

⎞
⎟
⎠
. (A.10)

Similarly to f1, we compute the Hessian of f2 as follows,

∂2f2

∂Û2
=
⎛
⎜
⎝

P(v̂)P−1(ĥ)P(v̂) 0 −P(v̂)P−1(ĥ)
0 0 0

−P−1(ĥ)P(v̂) 0 P−1(ĥ)

⎞
⎟
⎠
. (A.11)

In addition, a direct computation gives

∂f3

∂Û
= (g(ĥ + B̂)⊺,0,0) Ô⇒

∂2f3

∂Û2
=
⎛
⎜
⎝

gI 0 0
0 0 0
0 0 0

⎞
⎟
⎠
. (A.12)

Finally, for any vector (w⊺1 ,w
⊺
2 ,w

⊺
3)
⊺
∈ R3K , we compute the quadratic form associated with the Hessian matrices as

follows:

(w⊺1 ,w
⊺
2 ,w

⊺
3)

∂2f1

∂Û2

⎛
⎜
⎝

w1

w2

w3

⎞
⎟
⎠
= (P(û)w1 −w2)

⊺
P
−1
(ĥ)(P(û)w1 −w2) ≥ 0,

(w⊺1 ,w
⊺
2 ,w

⊺
3)

∂2f2

∂Û2

⎛
⎜
⎝

w1

w2

w3

⎞
⎟
⎠
= (P(v̂)w1 −w3)

⊺
P
−1
(ĥ)(P(v̂)w1 −w3) ≥ 0,

(w⊺1 ,w
⊺
2 ,w

⊺
3)

∂2f3

∂Û2

⎛
⎜
⎝

w1

w2

w3

⎞
⎟
⎠
= g∥w1∥

2
≥ 0.

(A.13)

This results in that the quadratic form associated with the Hessian of E being non-negative, provided that P is positive
definite. In addition, the quadratic form vanishes if and only if w1 = w2 = w3 = 0, implying that E is strictly convex in Û ,
completing the proof.

A.3 Proof of lemma 3
Instead of directly demonstrating (3.10), we will present the equivalent compatibility condition,

∂E

∂Û
(
∂F̂

∂Û

∂Û

∂x
+
∂Ĝ

∂Û

∂Û

∂y
− Ŝ) =

∂H

∂x
+
∂K

∂y
. (A.14)

We divide each of the entropy and flux functions into two parts, respectively,

E(Û) = E1 +E2, E1 =
1

2
((q̂x)⊺û + (q̂y)⊺v̂) +

1

2
g∥ĥ∥2, E2 = gĥ

⊺B̂, (A.15)

H(Û) = H1 +H2, H1 =
1

2
(û⊺P(q̂x)û + v̂⊺P(q̂x)v̂) + g(q̂x)⊺ĥ, H2 = g(q̂x)

⊺B̂, (A.16)

K(Û) =K1 +K2, K1 =
1

2
(v̂⊺P(q̂y)v̂ + û⊺P(q̂y)û) + g(q̂y)⊺ĥ K2 = g(q̂y)

⊺B̂. (A.17)

The computation in Lemma 2 gives,

∂E1

∂Û
= ( −

1

2
û⊺P(û) −

1

2
v̂⊺P(v̂) + gĥ⊺, û⊺, v̂⊺),

∂E2

∂Û
= (gB̂⊺,0,0), (A.18)

which implies

−
∂E1

∂Û
Ŝ = g(q̂x)⊺B̂x + g(q̂y)

⊺B̂y . (A.19)

The equations above, the flux Jacobians in (2.15), and the source term in (2.13), indicate

−
∂E1

∂Û
Ŝ +

∂E2

∂Û
(
∂F̂

∂Û

∂Û

∂x
+
∂Ĝ

∂Û

∂Û

∂y
− Ŝ) (A.20)

=g(q̂x)⊺B̂x + g(q̂y)
⊺B̂y + gB̂

⊺(
∂q̂x

∂x
+
∂q̂y

∂y
) (A.21)

=(g(q̂x)⊺B̂x + gB̂
⊺ ∂q̂x

∂x
) + (g(q̂y)⊺B̂y + gB̂

⊺ ∂q̂y

∂y
) (A.22)

=
∂H2

∂x
+
∂K2

∂y
. (A.23)
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Therefore, the compatibility condition (A.14) is equivalent to the following condition,

∂E1

∂Û
(
∂F̂

∂Û

∂Û

∂x
+
∂Ĝ

∂Û

∂Û

∂y
) =

∂H1

∂x
+
∂K1

∂y
=
∂H1

∂Û

∂Û

∂x
+
∂K1

∂Û

∂Û

∂y
. (A.24)

It suffices to show

∂E1

∂Û

∂F̂

∂Û
=
∂H1

∂Û
,

∂E1

∂Û

∂Ĝ

∂Û
=
∂K1

∂Û
, (A.25)

which can be computed directly from (A.18), (2.15), (A.15), and (3.9).

B Proofs for section 4.2
In this section we provide proofs for lemmas 5 to 7 in section 4.2, which are the crucial ingredients to proving that the
choice of numerical fluxes (4.12) yields a second-order, well-balanced, EC scheme.

B.1 Proof of lemma 5
Assume (Û , B̂) are spatially smooth functions and (Ui,Bi) are the exact cell averages. It suffices to compare the numerical
fluxes Fi+ 1

2
,j ,Gi,j+ 1

2
and the numerical source term Si,j to the exact fluxes F̂ (Û) at (xi+ 1

2
, yj), and Ĝ(Û) at (xi, yj+ 1

2
),

and the exact source function Ŝ(Û) at (xi, yj), respectively. We can rewrite F̂ (Û) and Ĝ(Û) in (2.12) as

F̂ (Û)
(2.14)
=
⎛
⎜
⎝

P(ĥ)û

P(q̂x)û + 1
2
gP(ĥ)ĥ

P(q̂x)v̂

⎞
⎟
⎠

(2.9),(2.14)
=

⎛
⎜
⎜
⎝

P(ĥ)û

P(û)P(ĥ)û + 1
2
gP(ĥ)ĥ

P(v̂)P(ĥ)û

⎞
⎟
⎟
⎠

,

Ĝ(Û)
(2.14)
=
⎛
⎜
⎝

P(ĥ)v̂
P(q̂y)û

P(q̂y)v̂ + 1
2
gP(ĥ)ĥ

⎞
⎟
⎠

(2.9),(2.14)
=

⎛
⎜
⎜
⎝

P(ĥ)v̂

P(û)P(ĥ)v̂

P(v̂)P(ĥ)v̂ + 1
2
gP(ĥ)ĥ

⎞
⎟
⎟
⎠

.

(B.1)

Notice the following quantitative approximations in space:

U i+ 1
2
,j = Û(xi+ 1

2
, yj) +O(∆x2

), U i,j+ 1
2
= Û(xi, yj+ 1

2
) +O(∆y2), (B.2a)

ui+ 1
2
,j = û(xi+ 1

2
, yj) +O(∆x2

), ui,j+ 1
2
= û(xi, yj+ 1

2
) +O(∆y2), (B.2b)

vi+ 1
2
,j = v̂(xi+ 1

2
, yj) +O(∆x2

), vi,j+ 1
2
= v̂(xi, yj+ 1

2
) +O(∆y2), (B.2c)

JUKi+ 1
2
,j =∆xÛx(xi+ 1

2
, yj) +O(∆x2

), JUKi,j+ 1
2
=∆yÛy(xi, yj+ 1

2
) +O(∆y2), (B.2d)

P(hi+ 1
2
,j) = P(ĥ(xi+ 1

2
, yj)) +O(∆x2

), P(hi,j+ 1
2
) = P(ĥ(xi, yj+ 1

2
)) +O(∆y2), (B.2e)

P(ui+ 1
2
,j) = P(û(xi+ 1

2
, yj)) +O(∆x2

), P(ui,j+ 1
2
) = P(û(xi, yj+ 1

2
)) +O(∆y2), (B.2f)

P(vi+ 1
2
,j) = P(v̂(xi+ 1

2
, yj)) +O(∆x2

), P(vi,j+ 1
2
) = P(v̂(xi, yj+ 1

2
)) +O(∆y2). (B.2g)

With the quantitative approximations above, it is straightforward to show that the numerical fluxes (4.12) are second-order
approximations of the exact fluxes (B.1) respectively, i.e.,

F
EC
i+ 1

2
,j
= F̂ (Û)∣x

i+ 1
2
,yj +O(∆x2

), G
EC
i,j+ 1

2
= Ĝ(Û)∣xi,yj+ 1

2

+O(∆y2). (B.3)

Moreover, to show that the scheme (4.3) has a second-order spatial local truncation error, it suffices to show that
FEC

i+ 1
2
,j
−FEC

i− 1
2
,j

∆x
is a second-order approximation of F̂ (Û)x at (xi, yj), and

GEC

i,j+ 1
2

−GEC

i,j− 1
2

∆y
is a second-order approximation

of Ĝ(Û)y at (xi, yj), and the numerical source term Si,j is a second-order approximation of Ŝ(Û) at (xi, yj). This can
be shown directly by applying the Taylor’s expansion to the numerical fluxes at (xi, yj). For example, consider the first

K-block term corresponding to ĥ in
FEC

i+ 1
2
,j
−FEC

i− 1
2
,j

∆x
, assuming Ui,j = Û(xi, yj),

(FEC
i+ 1

2
,j
)h − (FEC

i− 1
2
,j
)h

∆x
=

P(hi+ 1
2
,j)ui+ 1

2
,j −P(hi− 1

2
,j)ui− 1

2
,j

∆x

(B.2b),(B.2e)
= ((P(ĥ)û)x)i,j +O(∆x2

), (B.4)

where ((P(ĥ)û)x)i,j is the partial derivative with respect to x of the exact flux at (xi, yj). More detailed computations

are as follows for one of the terms: We compute the local truncation error of
(FEC

i+ 1
2
,j
)h−(FEC

i− 1
2
,j
)h

∆x
to the exact flux

40



(F̂h(Û))
x
= (P(ĥ)û)

x
. First, by (4.12),

(FEC
i+ 1

2
,j
)h − (FEC

i− 1
2
,j
)h

∆x
=

P(hi+ 1
2
,j)ui+ 1

2
,j −P(hi− 1

2
,j)ui− 1

2
,j

∆x

=
1

4∆x

⎛

⎝
(P(ĥi,j) +P(ĥi+1,j))(ûi,j + ûi+1,j) − (P(ĥi,j) +P(ĥi−1,j))(ûi,j + ûi−1,j)

⎞

⎠
.

(B.5)

Then, we apply the Taylor’s expansion of the crossing product terms in the second equality, i.e., P(ĥi,j)ûi+1,j , P(ĥi+1,j)ûi,j ,

P(ĥi,j)ûi−1,j and P(ĥi−1,j)ûi,j at (xi, yj). This results in

(B.5) =
1

4∆x

⎛

⎝
P(ĥi,j)ûi,j +P(ĥi,j)(ûi,j +∆x(ûx)i,j +

∆x2

2
(ûxx)i,j) +

∆x3

6
(ûxxx)i,j) +O(∆x4

))

+ ûi,j(P(ĥi,j) +∆x(P(ĥx))i,j +
∆x2

2
(P(ĥxx))i,j) +

∆x3

6
(P(ĥxxx))i,j) +O(∆x4

)) + (P(ĥ)û)i+1,j
⎞

⎠

−
1

4∆x

⎛

⎝
P(ĥi,j)ûi,j +P(ĥi,j)(ûi,j −∆x(ûx)i,j +

∆x2

2
(ûxx)i,j) −

∆x3

6
(ûxxx)i,j) +O(∆x4

))

+ ûi,j(P(ĥi,j) −∆x(P(ĥx))i,j +
∆x2

2
(P(ĥxx))i,j) −

∆x3

6
(P(ĥxxx))i,j) +O(∆x4

)) + (P(ĥ)û)i−1,j
⎞

⎠
.

(B.6)

After combining the terms in the same order, we get

(B.6) =
1

4∆x
(2∆xP(ĥi,j)(ûx)i,j + 2∆xP(ĥx)i,j(û)i,j +

∆x3

3
(ûxxx)i,j)

+
1

4∆x
((P(ĥ)û)i+1,j − (P(ĥ)û)i−1,j) +O(∆x3

).

(B.7)

Finally, we again apply the Taylor’s expansion to (P(ĥ)û)i+1,j − (P(ĥ)û)i−1,j to obtain a second-order approximation of

(P(ĥ)û)
x
at (xi, yj)

(B.7) =
1

2
((P(ĥ)û)x)i,j +

∆x2

12
(ûxxx)i,j +

1

4∆x
(2∆x((P(ĥ)û)x)i,j +

∆x3

3
((P(ĥ)û)xxx)i,j) +O(∆x3

)

=((P(ĥ)û)x)i,j +
∆x2

12
((ûxxx)i,j + ((P(ĥ)û)xxx)i,j) +O(∆x3

).

(B.8)

Similarly, other terms in the numerical fluxes can be evaluated by the Taylor’s expansion to verify the second-order local
truncation error of the energy conservative scheme.

In this way, one can directly compute the local truncation error to show that the scheme (4.3), with the numerical
fluxes and source term (4.12), is second-order spatially accurate.

B.2 Proof of lemma 6
Suppose we are given the initial data

ui,j = vi,j ≡ 0, hi,j +Bi,j = const vector, ∀i, j. (B.9)

The time-independent bottom topography leads to d
dt
Bi,j = 0,∀i, j. To prove the well-balanced property, it suffices to

show
d

dt
hi,j ≡ 0,

d

dt
qx
i,j ≡ 0,

d

dt
qy
i,j ≡ 0, ∀i, j. (B.10)

By the straightforward substitution and the fact that the discretization of the velocities are both zero vectors, due to
(B.10),

d

dt
hi,j = −

1

∆x
(P(hi+ 1

2
,j)ui+ 1

2
,j −P(hi− 1

2
,j)ui− 1

2
,j)

−
1

∆y
(P(hi,j+ 1

2
)vi,j+ 1

2
−P(hi,j− 1

2
)vi,j− 1

2
)

=0.

(B.11)

Before investigating the time derivative of the discharge, we first introduce useful identities:

(P(h)h)
i+ 1

2
,j
− (P(h)h)

i− 1
2
,j

(4.6)
=

1

2
(JP(h)hKi+ 1

2
,j + JP(h)hKi− 1

2
,j)

(4.8a)
= P(hi+ 1

2
,j)JhKi+ 1

2
,j +P(hi− 1

2
,j)JhKi− 1

2
,j ,

(P(h)h)
i,j+ 1

2

− (P(h)h)
i,j− 1

2

(4.6)
=

1

2
(JP(h)hKi,j+ 1

2
+ JP(h)hKi,j− 1

2
)

(4.8a)
= P(hi,j+ 1

2
)JhKi,j+ 1

2
+P(hi,j− 1

2
)JhKi,j− 1

2
.

(B.12)
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Now by straightforward substitution, using identities (B.12) and the initial data, we obtain the following result:

d

dt
qx
i,j

(4.12)
= −

g

2∆x
((P(h)h)

i+ 1
2
,j
− (P(h)h)

i− 1
2
,j
)

−
g

2∆x
(P(hi+ 1

2
,j)JBKi+ 1

2
,j +P(hi− 1

2
,j)JBKi− 1

2
,j)

(B.12)
= −

g

2∆x
(P(hi+ 1

2
,j)Jh +BKi+ 1

2
,j +P(hi− 1

2
,j)Jh +BKi− 1

2
,j)

(B.9)
= 0,

d

dt
qy
i,j

(4.12)
= −

g

2∆y
((P(h)h)

i,j+ 1
2

− (P(h)h)
i,j− 1

2

)

−
g

2∆y
(P(hi,j+ 1

2
)JBKi,j+ 1

2
+P(hi,j− 1

2
)JBKi,j− 1

2
)

(B.12)
= −

g
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(P(hi,j+ 1

2
)Jh +BKi,j+ 1

2
+P(hi,j− 1

2
)Jh +BKi,j− 1

2
)

(B.9)
= 0,

(B.13)

which completes the proof.

B.3 Proof of lemma 7
By multiplying both sides of (4.3) by V ⊺i,j and using the definition Vi,j ∶= (

∂Ei,j

∂Ui,j
)⊺, we obtain

d

dt
Ei,j = −

1

∆x
(V ⊺i,jFi+ 1

2
,j −V

⊺
i,jFi− 1

2
,j) −

1

∆y
(V ⊺i,jGi,j+ 1

2
−V ⊺i,jGi,j− 1

2
) +V ⊺i,jSi,j . (B.14)

We estimate these terms separately. The first term on the right-hand side can be expanded as follows:

V ⊺i,jFi+ 1
2
,j

(4.7)
= V

⊺
i+ 1

2
,jFi+ 1

2
,j −

1

2
JV K⊺

i+ 1
2
,j
Fi+ 1

2
,j

(4.13)(4.14)
= Hi+ 1

2
,j +Ψi+ 1

2
,j +

g

4
JBK⊺

i+ 1
2
,j
P(hi+ 1

2
,j)JuKi+ 1

2
,j

−
1

2
JΨKi+ 1

2
,j −

g

2
JBK⊺

i+ 1
2
,j
P(hi+ 1

2
,j)ui+ 1

2
,j

(4.7)
= Hi+ 1

2
,j +Ψi,j −

g

2
JBK⊺

i+ 1
2
,j
P(hi+ 1

2
,j)ui,j .

(B.15)

Using an analogous computation, we can also obtain the second term,

V ⊺i,jFi− 1
2
,j =Hi− 1

2
,j +Ψi,j +

g

2
JBK⊺

i− 1
2
,j
P(hi− 1

2
,j)ui,j . (B.16)

Additionally, in a similar manner, and with the corresponding quantities in (4.13) and (4.14), we derive

V ⊺i,jGi,j+ 1
2
= Ki,j+ 1

2
+Φi,j −

g

2
JBK⊺

i,j+ 1
2

P(hi,j+ 1
2
)vi,j ,

V ⊺i,jGi,j− 1
2
= Ki,j− 1

2
+Φi,j +

g

2
JBK⊺

i,j− 1
2

P(hi,j− 1
2
)vi,j .

(B.17)

Finally, a direct computation shows

V ⊺i,jSi,j = −
gu⊺i,j
2∆x

(P(hi+ 1
2
,j)JBKi+ 1

2
,j +P(hi− 1

2
,j)JBKi− 1

2
,j)

−
gv⊺i,j
2∆y

(P(hi,j+ 1
2
)JBKi,j+ 1

2
+P(hi,j− 1

2
)JBKi,j− 1

2
)

(B.18)

The formula (B.14), together with the combination of expressions (B.15), (B.16), (B.17), and (B.18), shows that the
scheme (4.3) is energy conservative, with energy fluxes defined in (4.14).
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