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Abstract. Most technologically useful materials spanning multiple length scales are polycrys-
talline. Polycrystalline microstructures are composed of a myriad of small crystals or grains with
different lattice orientations which are separated by interfaces or grain boundaries. The changes
in the grain and grain boundary structure of polycrystals highly influence the material’s properties
including, but not limited to, electrical, mechanical, and thermal. Thus, an understanding of how
microstructures evolve is essential for the engineering of new materials. In this paper, we consider
a recently introduced nonlinear Fokker–Planck-type system and establish a global well-posedness
result for it. Such systems under specific energy laws emerge in the modeling of the grain boundary
dynamics in polycrystals.
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1. Introduction. In this paper, we study the global well-posedness of a non-
linear Fokker-Planck type model of grain growth introduced in [13]. Grain growth
is a highly complex multiscale-multiphysics process appearing in materials science
which describes the evolution of the microstructure of polycrystalline materials, e.g.
[8, 4, 21, 5, 2, 3, 28, 32, 26, 6, 30]. These materials consist of many small monocrys-
talline grains which are separated by interfaces or grain boundaries as depicted in
Figure 1.
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Fig. 1. Left figure: A schematic plot of three grain boundaries that meet at a triple junction
point a(t). For each i, j ∈ {1, 2, 3}, α(j) = α(j)(t) represents the lattice orientation that corresponds
to grid lines on the figure and the differences α(i) −α(j) represent the lattice misorientations. Right
figure: An instance of the simulation of the 2D grain network that is a collection of grain boundaries
and triple junction points [14, 3].

The properties of the resulting material depend in a complicated way on many
factors, including, but not limited to, initial microstructure configuration and anneal-
ing process. By changing the grain statistics of a material, it is possible to control,
for instance, its mechanical, thermal, and electrical properties [23, 6]. In particular,
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smaller grains lead to improvement in material strength and toughness, which are
crucial in the ceramics industry [31]. On the other hand, larger grains usually help to
reduce electrical resistivity which is useful in the thin film and microchip industries
[34, 7, 6]. So, for manufacturing purposes, it is highly valuable to predict and control
polycrystalline microstructure.

For this aim, in [14], the authors introduce a new system for the evolution of the
two-dimensional grain boundary network with finite mobility of the triple junctions
(triple junction drag) and with dynamic lattice orientations/misorientations. In [14]
the grain boundary curvature was assumed to be the fastest time scale and was relaxed
first (and, hence, the grain boundaries became line segments), see also very recent
work [30] and the work [35] is also relevant. Thus, such model [14], which we call
the vertex model, tracks the evolution of lattice orientations α(j)(t) ∈ R, j as in the
description of Figure 1 and triple junction points a(t) ∈ R2. In technical terms this
is a system of O(N) ODEs, where N is the number of grains.

Since polycrystalline materials in applications consist of N ≳ 104 monocrystalline
grains (see, e.g., [28], but it also depends on the particular setting), this is a coupled
system of a very large number of equations. As is common in such multi-scale physics
problems it is desirable to derive and study a macroscopic model which describes the
evolution of statistical quantities related to the underlying microscopic system. For
this aim, the authors in [12, 13, 16] studied the N → ∞ limit of the vertex model
resulting in the following free energy with inhomogeneous absolute temperature D(x):

(1.1) F [f ] =

∫
Td

(D(x)f(x, t)(log f(x, t)− 1) + ϕ(x)f(x, t)) dx

together with the dissipation relation

(1.2)
d

dt
F [f ] = −

∫
Td

f

π(x, t)
|∇(D(x) log f + ϕ(x))|2 dx.

Here, Td := Rd/Zd is d-dimensional torus, π(x, t) > 0 is mobility function, D(x) > 0
is inhomogeneous but time-independent absolute temperature (it can be viewed as a
function of the fluctuation parameters of the lattice misorientations and of the position
of the triple junctions due to fluctuation-dissipation principle and it also accounts for
some information of the under-resolved mechanisms in the system, for example, such
as topological changes during microstructure evolution [15]), and ϕ(x) is the energy
density of a grain boundary. In relation to the microscopic system described above,
the state variable x is a pair (a,∆α) where a ∈ T2 is the triple junction location and
∆α ∈ T2 is the lattice misorientation. Then f(x, t) is the time dependent probability
density function on state space of triple junction and lattice misorientation pairs.

By the energetic-variational approach, see e.g., [4, 18, 15, 13], the free energy
(1.1) and the dissipation relation (1.2) determine the following PDE:

(nFP-D)


∂f

∂t
= ∇ ·

(
f

π(x, t)
∇ (D(x) log f + ϕ(x))

)
, x ∈ Td, t > 0,

f(x, 0) = f0(x), x ∈ Td.

Due to inhomogeneity of the absolute temperature D(x), the system (nFP-D) has
a nonlinear term at first order, and is thus only semilinear. Such inhomogeneity
and the resulting non-linearity are very different from the vast existing literature on
the Fokker-Planck type models and introduces several challenges for the mathemat-
ical analysis of the model, including for the global well-posedness study which we
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will resolve in this work. In addition to energetic-variational approach, the detailed
derivation of this model from a kinematic continuity equations perspective is given in
[13].

Besides grain growth modeling, Fokker-Planck type partial differential equations
also appear in many other areas of science and mathematics, ranging from physics to
economics. Some particular examples are: modeling of a gene regulatory network in
biology [10], cell migration [33], plasma physics [29], gas flows [19], financial market
dynamics [27], computational neuroscience [9], galactic nuclei [36], probability theory
[1], and optimal transport [20].

The contribution of this paper is to obtain the existence of the unique classical
positive global solution of the nonlinear Fokker-Planck type equation (nFP-D). We
achieve this result under some mild assumptions including Hölder regularity of the
coefficients of LFP and strict positivity of the initial data f0 in (nFP). The detailed
description of the assumptions can be found in Section 2.1 and the main results are
in Theorem 3.8 and Theorem 4.2.

In [13], the authors obtain the unique classical local solution of (nFP-D) under
natural (no flux) boundary conditions. They assume C2+β

x regularity of the initial
data for local existence, which is challenging to control via a priori estimates and to
extend to a global solution. In contrast our work only uses uniform upper and lower
bounds on the initial data to obtain local existence, and thus can be combined with
a maximum principle [12, 16] to continue the solution. Also the result in [13] comes
after the application of three different change of variables. Our analysis, on the other
hand, does not rely on any change of variables so, we propose a more direct and
classical approach.

In [12, 16] the authors study long time asymptotic behavior of the solutions of
(nFP-D). Call f eq(x) to be the energy minimizing equilibrium state which takes the
following form:

(1.3) f eq(x) := exp

(
−ϕ(x)− Ceq

D(x)

)
where Ceq ∈ R is a free parameter determined by the total mass. The works [12,
16] show an a priori estimate bounding the maximum and minimum of solutions of
(nFP-D) in terms of D(x), f0(x), and f eq(x), and show convergence to equilibrium
as t → ∞. All of these results, however, are conditional on the existence of a global
classical solution. Our result complements and completes the picture in [12, 13, 16],
showing the existence of such solutions.

Summary of the proof. First, by expanding the divergence form operator in
(nFP-D) via product rule, it is possible to write (nFP-D) in the following form, which
separates linear and nonlinear terms:

(nFP)


∂f

∂t
= LFPf +∇ ·

(
∇D(x)

π(x, t)
f log f

)
, x ∈ Td, t > 0,

f(x, 0) = f0(x), x ∈ Td.

Here LFP is a divergence form linear operator as defined below:

(LO) LFPf := ∇ ·
(

D(x)

π(x, t)
∇f

)
+

∇ϕ(x)

π(x, t)
· ∇f +∇ ·

(
∇ϕ(x)

π(x, t)

)
f.

Next we follow a typical approach to local existence for semilinear PDE. We treat
the nonlinearity of (nFP) as a source term, see (LPNE), and apply fixed point mapping



4 B. BAYIR, Y. EPSHTEYN, AND W. M. FELDMAN

techniques. In Definition 3.1, by Duhamel’s principle, we present corresponding map
of (LPNE) in terms of the fundamental solution of ∂t − LFP which is (M). Using
Gaussian bounds of ∂t − LFP from Corollary 2.6, we prove that the map (M) is
contraction mapping and obtain the unique fixed point solution of (LPNE) which is
also solution of (nFP). Applying Schauder estimates of Proposition 2.7, we upgrade
the regularity of the fixed point solution and obtain the unique classical local solution.
To extend to a global solution, we repeat our argument on nested time intervals via
induction together with an a-priori estimate proved in [12, 16], see Proposition 4.1
below.

Organization of the paper. In Section 2, we state our assumptions, notation,
and some preliminary results from parabolic PDE theory. In Section 3, we establish
local existence of solutions. Lastly, in Section 4, we obtain the unique positive classical
global solution of (nFP) and complete our discussion.

2. Preliminaries. In this section, we list our assumptions, some useful notation,
and elementary results related to parabolic PDEs.

2.1. Assumptions. We make the following positivity and regularity assump-
tions on LFP and f0:

(A1) D(x)
π(x,t) ≥ θ for all (x, t) ∈ Td × [0,∞) for some arbitrary θ > 0 which is in-

dependent from x and t. With this assumption, the linear part of (nFP),
∂t − LFP, defines a linear second-order uniformly parabolic differential oper-
ator in the sense of Definition 2.1. Here, Td is d-dimensional torus.

(A2) The coefficients of LFP when they are considered in non-divergence form:
D(x)
π(x,t) ,

∇ϕ(x)
π(x,t) + ∇

(
D(x)
π(x,t)

)
, and ∇ ·

(
∇ϕ(x)
π(x,t)

)
are bounded and belongs to

C
1+β,β/2
x,t (Td × [0,∞)). In addition, the coefficient of the nonlinear part,

∇D(x)
π(x,t) satisfies the same assumptions. Here, β ∈ (0, 1) is Hölder exponent of

the coefficients.
(A3) Λ ≥ f0(x) ≥ 4µ for some arbitrary but fixed Λ, µ > 0 which are independent

from x ∈ Td.
(A4) There is CD ≥ 1 which is independent from x ∈ Td such that D(x) ≥ CD.

There are also C low
π , Cup

π > 0 which are independent from (x, t) ∈ Td× [0,∞)
such that C low

π ≤ π(x, t) ≤ Cup
π [16].

2.2. Notation.
(N1) Constants C > 0 may change their values from line to line.
(N2) We use the symbol |·| for Euclidean distance on Rd and the distance on Td

inherited from the Euclidean distance on Rd via the isometry with Rd/Zd

where Zd is d-dimensional integer lattice.

2.3. Parabolic Equations. In this subsection, we recall some basic facts from
parabolic PDEs and our main reference is Friedman’s classical book [17] as well as
[24, 25] can be relevant too.

Definition 2.1 (Parabolic operators). Consider differential operators in the
form:

Lf :=

d∑
i,j=1

∂

∂xi

(
aij(x, t)

∂f

∂xj

)
+

d∑
i=1

bi(x, t)
∂f

∂xi
+ c(x, t)f.

We call ∂t − L to be a second-order uniformly parabolic operator in divergence form
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if it satisfies the following two properties:
(P1) aij(x, t) = aji(x, t) for all i, j ∈ {1, . . . , d} and (x, t) ∈ Td × (0, T ],

(P2)
∑d

i,j=1 a
ij(x, t)ξiξj ≥ λ |ξ|2 holds for all (x, t) ∈ Td × (0, T ] where λ > 0 is

uniform parabolicity constant which is independent from (x, t).

Observe that, with Assumption (A1), ∂t − LFP defines a second-order uniformly
parabolic operator in divergence form where LFP defined as in (LO).

Remark 2.2. We always assume that the coefficients of ∂t − L are sufficiently
differentiable when we switch to the non-divergence form of the operator by applying
product rule. This is convenient for applying the results of Friedman [17], which are
stated for operators in non-divergence form.

Definition 2.3 (Fundamental solution [17, p. 3]). Let ∂t −L be a second order
uniformly parabolic differential operator. We call K(x, t, y, s) to be the fundamental
solution of ∂t − L in Td × [0, T ] if the following two properties hold:

(P1) K(x, t, y, s) is solution of ∂th = Lh as a function of (x, t) ∈ Td × [0, T ] for
every fixed (y, s) with y ∈ Td and s < t ≤ T ,

(P2) for every continuous function f0 on Td, K satisfies the limit relation given
below

lim
t→s

∫
Td

K(x, t; y, s)f0(y)dy = f0(x).

The fundamental solution K is strictly positive function [17, Thm. 11, Ch. 2]:

(2.1) K(x, t, y, s) > 0 for all x, y ∈ Td, and t > s.

By using the fundamental solution and Duhamel’s principle, it is possible to come
up with the following representation formula for the initial value problem associated
with ∂t − L.

Theorem 2.4 (Representation formula [17, Thm. 10, Ch. 3]). Let ∂t − L be a
second-order uniformly parabolic operator in divergence form such that all of its coef-

ficients in non-divergence form are β-Hölder continuous. Then, there is a C
2+β,1+β/2
x,t

classical solution of ∂th = Lh with the initial condition f0 ∈ C0(Td) which can be
represented by

h(x, t) =

∫
Td

K(x, t; y, 0)f0(y)dy

where K is the fundamental solution of ∂t − L as in Definition 2.3.

Moreover, the fundamental solution K of divergence form operator ∂t−L satisfies
the following comparison principle:

(2.2) exp (cinf(t− s)) ≤
∫
Td

K(x, t; y, s)dy ≤ exp (csup(t− s))

where cinf and csup denotes the infimum and supremum of the coefficient c(x, t) of
∂t−L on Td× (s,∞) respectively and c(x, t) as in Definition 2.1. This follows from a
standard parabolic comparison principle because the left and right hand side of (2.2)
are, respectively, a subsolution and supersolution of (∂t − L)ϕ = 0, the middle term
v(x, t) :=

∫
Td K(x, t; y, s)dy solves (∂t − L)v = 0, and all three have the same initial

data, identically 1.
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Such fundamental solutions and their derivatives satisfy Gaussian bounds similar
to the heat kernel, as stated in the following theorem.

Theorem 2.5 (Gaussian bounds on the fundamental solution [17, Thm. 7, Ch. 9],
[17, Thm. 8, Ch. 9], [17, p. 255]). Let K be the fundamental solution of the second-
order uniformly parabolic operator ∂t − L in non-divergence form such that all of
its coefficients are bounded and Cl+β,0

x,t -Hölder regular. Then the following Gaussian
bounds hold on K and its derivatives:

(2.3)
∣∣∂a

t ∇b
yK(x, t; y, s)

∣∣ ≤ C(t− s)−(d+2a+b)/2 exp

(
−c |x− y|2

t− s

)

and

|∇yK(x, t; y, s)−∇yK(x′, t; y, s)|

≤ C |x− x′|β (t− s)−(d+1+β)/2

(
exp

(
−c |x− y|2

t− s

)
+ exp

(
−c |x′ − y|2

t− s

))
(2.4)

where β ∈ (0, 1) and c, C > 0 are constants which depend on the dimension, uniform
parabolicity constant λ of L, uniform upper bound of the coefficients of L, Hölder
regularity of the coefficients of L, and order of the derivatives a, b ∈ Z≥0. Note that,
2a+ b ≤ 2 + l.

In Definition 3.1 of the next section, via Duhamel’s principle, we introduce an
integral type map (M) associated with (nFP) which includes the fundamental solution
K and its gradient so, it is beneficial to record some quick conclusions of the above
Gaussian bounds.

Corollary 2.6 (Integral bounds on the fundamental solution). Let ∂t−L be a
second-order uniformly parabolic operator in non-divergence form which satisfies the
assumptions of Theorem 2.5 for l = 1. Then we have the following integral bounds on
the fundamental solution K of ∂t − L and its derivatives:∫ t

t′

∫
Td

|∇yK(x, t; y, s)| dyds ≤ C |t− t′|1/2 ,(2.5) ∫ t′

0

∫
Td

∫ t

t′
|∂τ∇yK(x′, τ ; y, s)| dτdyds ≤ C |t− t′|1/2 ,(2.6)

and ∫ t

0

∫
Td

|∇yK(x, t; y, s)−∇yK(x′, t; y, s)| dyds ≤ Ct(1−β)/2 |x− x′|β ,(2.7)

where β ∈ (0, 1), C > 0 is a constant as in Theorem 2.5, and t ≥ t′.

Proof. We only prove (2.6). (2.5) and (2.7) are shown using similar techniques
as (2.6). By using the identification Td ∼= [0, 1)d ⊂ Rd, we can estimate the space
integral of Gaussian on Td as∫

Td

exp

(
−c |x′ − y|2

τ − s

)
dy ≤

∫
Rd

exp

(
−c |x′ − y|2

τ − s

)
dy = C(τ − s)d/2.(2.8)
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Now, we start to the estimation with an application of Tonelli’s theorem in the
left hand side of (2.6).∫ t′

0

∫
Td

∫ t

t′
|∂τ∇yK(x′, τ ; y, s)| dτdyds

=

∫ t′

0

∫ t

t′

∫
Td

|∂τ∇yK(x′, τ ; y, s)| dydτds

(2.3)

≤ C

∫ t′

0

∫ t

t′

∫
Td

(τ − s)−(d+3)/2 exp

(
−c |x′ − y|2

τ − s

)
dydτds

(2.8)

≤ C

∣∣∣∣∣
∫ t′

0

∫ t

t′
(τ − s)−3/2dτds

∣∣∣∣∣
= C

∣∣∣t1/2 − t′1/2 − (t− t′)1/2
∣∣∣

≤ C |t− t′|1/2

In last step, we have used the elementary inequality
∣∣a1/2 − b1/2

∣∣ ≤ |a− b|1/2 which
holds for all a, b ≥ 0.

Proposition 2.7 (Schauder estimates [11, Prop. 4.1]). Let ∂t − L be a second-
order uniformly parabolic operator in divergence form such that all of its coefficients
are bounded and β-Hölder continuous. Also, let Qr denotes the parabolic cylinder of

radius r and A(x, t) ∈ Cβ,0
x,t (Q1). If u ∈ C

2+β,1+β/2
x,t (Q2) solves the PDE

∂u

∂t
= Lu+∇ ·A(x, t)

then

(2.9) ∥u∥
C

1+β,(1+β)/2
x,t (Q1)

≤ C(∥u∥L∞(Q2) + [A]Cβ
x (Q2)

).

Next, assume further that the coefficients of ∂t−L in non-divergence form are bounded

and β-Hölder continuous. Let B(x, t) ∈ C
β,β/2
x,t (Q1), if v ∈ C

2+β,1+β/2
x,t (Q2) solves the

PDE

∂v

∂t
= Lv +B(x, t)

then

∥v∥
C

2+β,1+β/2
x,t (Q1)

≤ C(∥v∥L∞(Q2) + ∥B∥
C

β,β/2
x,t (Q2)

).(2.10)

The constant C depends only on the dimension, uniform parabolicity constant λ of L,
uniform upper bound and Hölder norms of the coefficients of L.

3. Proof of Local Existence. In this section, we will establish the local exis-
tence of solutions of (nFP) via Banach’s fixed point theorem.

In order to deal with the nonlinearity of (nFP), we first introduce the following
linear parabolic non-homogeneous equation which contains the nonlinearity of (nFP)
as a source term. Then we will find the fixed point solution of (LPNE) which will
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also be the solution of (nFP). The PDE is as follows:

(LPNE)


∂u

∂t
= LFPu+∇ ·

(
∇D(x)

π(x, t)
f log f

)
, x ∈ Td, t > 0,

u(x, 0) = f0(x), x ∈ Td,

where LFP as defined in (LO). At this point, f = f(x, t) ∈ X is an arbitrary function
such that f(x, 0) = f0(x), where X is defined below.

For the application of the fixed point argument, as a Banach space, we consider
X := C0(Td × [0, T ]) which is equipped with a sup-norm given by

∥f∥X := sup
(x,t)∈Td×[0,T ]

|f(x, t)|

for any f ∈ X. We also define the following norm-closed subset of X

(3.1) Y := {f ∈ X | f ≥ µ, ∥f∥X ≤ R}

where R := 1 + µ + 2∥f0∥C0(Td), µ > 0 is arbitrary but fixed real number as in

Assumption (A3). Also, we specify T > 0 in (3.4) later on.
Taking a closed ball as a closed subset of a some ambient normed space X is

a classical thing in most of the local existence proofs for various equations. In our
scenario, we additionally employ the positivity condition f ≥ µ > 0 in order to
obtain the norm estimates (3.2) and (3.3) on elements of Y presented below, which
will be useful for proving the well-definiteness and contraction properties of the map
(M) defined below. This positivity condition will also directly lead to existence of
a positive solution for a given positive initial data (see Assumption (A3)) which is
physically relevant for our model.

As we pointed out, (LPNE) is linear in the variable u and by Duhamel’s principle
its solution can be written as:

u =

∫
Td

K(x, t; y, 0)f0(y)dy

+

∫ t

0

∫
Td

K(x, t; y, s)∇y ·
(
∇D(y)

π(y, s)
f(y, s) log f(y, s)

)
dyds

where K is the fundamental solution of the second-order uniformly parabolic operator
∂t − LFP where LFP defined as in (LO) and its coefficients satisfy Assumption (A1).
By applying integration by parts to the second integral of the above formula, we
introduce the following notion of a map for which we will seek its fixed point.

Definition 3.1 (Map). We define the map Ψ : Y → Y , f 7→ u by the formula
given below

u = Ψf(x, t) =

∫
Td

K(x, t; y, 0)f0(y)dy

−
∫ t

0

∫
Td

∇yK(x, t; y, s) · V (y, s)f(y, s) log f(y, s)dyds

=: Ψf0,linear(x, t) + Ψf,nonlinear(x, t)

(M)

where V (y, s) := ∇D(y)
π(y,s) .
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Remark 3.2. Note that, integration by parts does not produce any boundary term
since ∂Td = ∅. We use the subscripts “linear” and “nonlinear” since Ψf0,linear solves
the linear part of (nFP) with the initial data f0 and Ψf,nonlinear is associated with
the nonlinear part of (nFP). In the above form, it is easy to make use of Corollary
2.6 along with the norm estimates (3.2) and (3.3) given below.

Our nonlinear Fokker-Planck type equation (nFP) contains logarithmic nonlin-
earity so, we should be able to control this term. To this end, for any f and g in
Y ⊂ X, we have the following norm estimates:

∥log f − log g∥X ≤ 1

µ
∥f − g∥X(3.2)

and

∥log f∥X ≤ R

µ
+ |logµ|+ 1.(3.3)

For the derivation, since both f and g are in Y , we have f, g ≥ µ and by using
1
µ -Lipschitz continuity of the logarithm function on [µ,∞) we have

|log f − log g| ≤ 1

µ
|f − g| .

After that, by taking the supremum of both sides on Td × [0, T ] we obtain (3.2). For
(3.3), by using the triangle inequality and Lipschitz continuity again, we can estimate

|log f | ≤ |log f − logµ|+ |logµ|

≤ 1

µ
|f − µ|+ |logµ|

≤ 1

µ
|f |+ |logµ|+ 1.

Then, similarly, by taking supremum of both sides on Td× [0, T ] in the last inequality
and using the fact that ∥f∥X ≤ R gives (3.3).

First, recall R = 1+ µ+ 2∥f0∥C0(Td), µ > 0 is arbitrary but fixed real number as

in Assumption (A3), C > 0 is a constant depending only on the constants in Theorem
2.5 which will be fixed during the proof, and V = ∇D

π as in Definition 3.1. Also, Winf

and Wsup denotes the infimum and supremum of the coefficient W (x, t) := ∇·
(

∇ϕ(x)
π(x,t)

)
of the zeroth order term in ∂t − LFP. Then we choose the time bound given below:

(3.4)

T 1/2 ≤ min

 min{µ, 1}

2
(
CR

(
2R
µ + |logµ|+ 1

)
∥V ∥sup + 1

) ,( log 2

|Winf|+ |Wsup|+ 1

)1/2
 .

With these preparations, in the next lemma, we show that the map (M) is well-
defined i.e. maps Y to itself. Hereafter, in proofs, we adapt the notational conventions
from Section 2.2 for brevity.

Lemma 3.3 (Well-definiteness of the map). The map (M) is well-defined i.e.
maps Y to itself where Y as defined in (3.1).
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Proof. First, we should prove that, for any f ∈ Y , (Ψf)(x, t) defines a continuous
function of (x, t). From the definition of map (M), we have the decomposition

(Ψf)(x, t) = (Ψf0,linear)(x, t) + (Ψf,nonlinear)(x, t)

so, it is sufficient to prove the continuity of the each part separately. The linear part,
(Ψf0,linear)(x, t), is continuous function of (x, t) according to Theorem 2.4.

For the nonlinear part, we start with the following difference:

(Ψf,nonlinear) (x
′, t′)− (Ψf,nonlinear)(x, t)

=

∫ t

0

∫
Td

∇yK(x, t; y, s) · V (y, s)f(y, s) log f(y, s)dyds

−
∫ t′

0

∫
Td

∇yK(x′, t′; y, s) · V (y, s)f(y, s) log f(y, s)dyds

=

∫ t

0

∫
Td

(∇yK(x, t; y, s)−∇yK(x′, t; y, s)) · V (y, s)f(y, s) log f(y, s)dyds

+

∫ t′

0

∫
Td

(∇yK(x′, t; y, s)−∇yK(x′, t′; y, s)) · V (y, s)f(y, s) log f(y, s)dyds

+

∫ t

t′

∫
Td

∇yK(x′, t; y, s) · V (y, s)f(y, s) log f(y, s)dyds

=: I1 + I2 + I3.

The next step is estimation of the integrals I1, I2, and I3. After that, we will combine
our estimates on I1, I2, and I3 to obtain desired continuity result.

Estimation of I1:

|I1| ≤
∫ t

0

∫
Td

|∇yK(x, t; y, s)−∇yK(x′, t; y, s)| |V (y, s)| |f(y, s)| |log f(y, s)| dyds

≤ ∥f∥X∥log f∥X∥V ∥sup
∫ t

0

∫
Td

|∇yK(x, t; y, s)−∇yK(x′, t; y, s)| dyds

(2.7),(3.3)

≤ CRT (1−β)/2

(
R

µ
+ |logµ|+ 1

)
∥V ∥sup |x− x′|β

Estimation of I2:

|I2| ≤
∫ t′

0

∫
Td

|∇yK(x′, t; y, s)−∇yK(x′, t′; y, s)| |V (y, s)| |f(y, s)| |log f(y, s)| dyds

≤ ∥f∥X∥log f∥X∥V ∥sup
∫ t′

0

∫
Td

|∇yK(x′, t; y, s)−∇yK(x′, t′; y, s)| dyds

FTC,(3.3)

≤ R

(
R

µ
+ |logµ|+ 1

)
∥V ∥sup

∫ t′

0

∫
Td

∫ t

t′
|∂τ∇yK(x′, τ ; y, s)| dτdyds

(2.6)

≤ CR

(
R

µ
+ |logµ|+ 1

)
∥V ∥sup |t− t′|1/2
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Estimation of I3:

|I3| ≤
∫ t

t′

∫
Td

|∇yK(x′, t; y, s)| |V (y, s)| |f(y, s)| |log f(y, s)| dyds

≤ ∥f∥X∥log f∥X∥V ∥sup
∫ t

t′

∫
Td

|∇yK(x′, t; y, s)| dyds

(2.5),(3.3)

≤ CR

(
R

µ
+ |logµ|+ 1

)
∥V ∥sup |t− t′|1/2

By combining estimates of I1, I2, and I3, for some constant C, we obtain

(3.5) |(Ψf,nonlinear)(x, t)− (Ψf,nonlinear) (x
′, t′)| ≤ C

(
|x− x′|β + |t− t′|1/2

)
which proves the continuity of the nonlinear part. Thus, (Ψf)(x, t) is continuous
function of (x, t) whenever f ∈ Y .

Second, we want to show that ∥Ψf∥X ≤ R whenever ∥f∥X ≤ R. We can estimate

|Ψf | ≤
∫
Td

|K(x, t; y, 0)| |f0(y)| dy

+

∫ t

0

∫
Td

|∇yK(x, t; y, s)| |V (y, s)| |f(y, s)| |log f(y, s)| dyds

(2.1)

≤ ∥f0∥C0(Td)

∫
Td

K(x, t; y, 0)dy

+ ∥f∥X∥log f∥X∥V ∥sup
∫ t

0

∫
Td

|∇yK(x, t; y, s)| dyds

(2.2),(2.5),(3.3)

≤ exp(Wsupt)∥f0∥C0(Td) + CRT 1/2∥V ∥sup

(
R

µ
+ |logµ|+ 1

)
(3.4)

≤ 2∥f0∥C0(Td) + 1

≤ R.

Then, by taking supremum on Td × [0, T ] in the both sides of the last inequality, we
obtain ∥Ψf∥X ≤ R.

Third, we should lastly show that Ψf ≥ µ whenever f ≥ µ. By using Assump-
tion (A3) i.e. f0(x) ≥ 4µ together with strict positivity and comparison principle
properties of the fundamental solution K, we can estimate

Ψf(x, t) =

∫
Td

K(x, t; y, 0)f0(y)dy

−
∫ t

0

∫
Td

∇yK(x, t; y, s) · V (y, s)f(y, s) log f(y, s)dyds

(A3),(2.1)

≥ 4µ

∫
Td

K(x, t; y, 0)dy

−
∫ t

0

∫
Td

|∇yK(x, t; y, s)| |V (y, s)| |f(y, s)| |log f(y, s)| dyds

(2.2)

≥ 4µ exp(Winft)− ∥f∥X∥log f∥X∥V ∥sup
∫ t

0

∫
Td

|∇yK(x, t; y, s)| dyds
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(2.5),(3.3)

≥ 4µ exp(− |Winf|T )− CRT 1/2∥V ∥sup

(
R

µ
+ |logµ|+ 1

)
(3.4)

≥ 2µ−min{µ, 1}
≥ µ.

Thus, we obtain Ψf ≥ µ whenever f ≥ µ. These are show map (M) is well-defined
on Y and complete the proof.

Lemma 3.4 (Contraction property of the map). The map (M) is 1
2 -contraction

mapping on Y .

Proof. Assume that f and g are two arbitrary functions from Y . We estimate the
following difference in the map (M):

|(Ψf)(x, t)− (Ψg)(x, t)|

≤
∫ t

0

∫
Td

|∇yK(x, t; y, s)| |V (y, s) (f(y, s) log f(y, s)− g(y, s) log g(y, s))| dyds

=

∫ t

0

∫
Td

|∇yK(x, t; y, s)|
∣∣∣∣V (y, s)(f(y, s) log f(y, s)− g(y, s) log f(y, s)

+ g(y, s) log f(y, s)− g(y, s) log g(y, s))

∣∣∣∣dyds
≤ (∥f − g∥X∥log f∥X + ∥g∥X∥log f − log g∥X)∥V ∥sup

∫ t

0

∫
Td

|∇yK(x, t; y, s)|dyds

(2.5),(3.2),(3.3)

≤ CT 1/2

(
2R

µ
+ |logµ|+ 1

)
∥V ∥sup∥f − g∥X

(3.4)

≤ 1

2
∥f − g∥X .

Finally, by taking supremum of both sides in the last inequality on Td × [0, T ], we
obtain the contraction property of the map (M) and this completes the proof.

Corollary 3.5 (Existence of a fixed point). There exists a unique fixed point
f of the map (M).

Proof. From Lemmas 3.3 and 3.4, we know that the map (M) is well-defined
contraction mapping on Y so, by Banach’s fixed point theorem, there exists a unique
fixed point f ∈ Y such that f = Ψf and this completes the proof.

In (3.5) we get something stronger which means that Ψf,nonlinear is β-Hölder
continuous in space and 1

2 -Hölder continuous in time. From Theorem 2.4, we also

know that Ψf0,linear is C
2,1
x,t . In particular, we conclude that f = Ψf0,linear+Ψf,nonlinear

is β-Hölder continuous in space. By using this information, in the next corollary, we

prove that f is in Hölder space C
2+β,1+β/2
loc to get a classical solution of (nFP).

Corollary 3.6 (Regularity). The unique fixed point f of (M) belongs to

f ∈ C
2+β,1+β/2
loc (Td × (0, T ])

where T as characterized in (3.4). So, this means f is two times differentiable in x
and one time differentiable in t with Hölder continuous derivatives. Hence, f is the
unique classical solution of (nFP).
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Proof. We basically adopt the argument of Krylov [22, Thm. 8.7.3] together with
Schauder estimates (2.9) and (2.10) to our problem. From the discussion above, f is
β-Hölder continuous in space and V = ∇D

π is also β-Hölder continuous in space due
to Assumption (A2). As a conclusion, F := V f log f is β-Hölder continuous in space.
Moreover, LFP as in (LO) is second-order uniformly parabolic operator in divergence
form with β-Hölder continuous coefficients due to Assumptions (A1) and (A2).

Since F ∈ Cβ
x , there is a sequence of functions Fn ∈ C∞

loc ∩ Cβ
x which con-

verge uniformly to F and have uniformly bounded Cβ
x -norms. Let un be the cor-

responding solutions of (LPNE) with forcing Fn. Since un ∈ C
2+β,1+β/2
x,t by [17,

Thm. 10, Ch. 3] Schauder estimate (2.9) applies, and therefore the C
1+β,(1+β)/2
x,t -

norms of un are uniformly bounded. Then one can establish that un → f uni-
formly, by using the uniform convergence of the Fn and the representation formula
(M). By a standard argument with distributional derivatives we can derive that

∥f∥
C

1+β,(1+β)/2
x,t

≤ lim inf ∥un∥C1+β,(1+β)/2
x,t

[22, Ex. 8.5.6]. Since V is also in C
1+β,β/2
x,t

due to Assumption (A2), this regularity of f makes the divergence term∇·F ∈ C
β,β/2
x,t .

Therefore, by applying the non-divergence form Schauder estimate (2.10) and similar

regularization procedure it is possible to upgrade the regularity of f to C
2+β,1+β/2
loc

and this completes the proof.

What happens if the initial data f0 and g0 are close to each other? In the next
lemma, we answer this question.

Corollary 3.7 (Continuous dependence on initial data). Let f and g be solu-
tions of (nFP) with initial data f0 and g0 respectively. Then the following continuity
estimate holds

(3.6) ∥f − g∥X ≤ 4∥f0 − g0∥C0(Td).

Proof. For the fixed points f and g of the map (M) with initial data f0 and g0
respectively, we can estimate

|f − g| ≤
∫
Td

|K(x, t; y, 0)| |f0(y)− g0(y)| dy

+

∫ t

0

∫
Td

|∇yK(x, t; y, s)| |V (y, s) (f(y, s) log f(y, s)− g(y, s) log g(y, s))| dyds

≤ 2∥f0 − g0∥C0(Td) +
1

2
∥f − g∥X

where we have used (2.1), (2.2), (3.4), and Lemma 3.4 in the last step. Then, by
taking supremum of both sides on Td× [0, T ] in the last inequality and then by doing
re-arrangement, we arrive to (3.6) which completes the proof.

Theorem 3.8 (Local well-posedness). Under the assumptions (A1), (A2), and
(A3) the initial value problem (nFP) is locally well posed on Y .

Proof. Follows from Corollaries 3.5, 3.6, and 3.7.

Remark 3.9 (Generalization of (nFP)). For any locally Lipschitz function N(f)

on (0,∞) and a vector field G(x, t) ∈ C
1+β,β/2
x,t , under the similar assumptions, it is

possible to generalize all of our analysis to the following class of PDEs
∂f

∂t
= Lf +∇ · (G(x, t)N(f)) , x ∈ Td, t > 0,

f(x, 0) = f0(x), x ∈ Td,
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since Gaussian bounds in Theorem 2.5 work for any second-order uniformly parabolic
differential operator ∂t − L with Hölder continuous coefficients.

4. Proof of Global Existence. In this section, we will show the existence of
the unique global solution of (nFP). Our argument for obtaining the unique global
solution relies on repeating our local existence proof on nested time intervals and using
an a priori estimate on the maximum and minimum of the ratio between a classical
solution f and the equilibrium state f eq (see (1.3)).

Recall the following a-priori estimates, proved in [12].

Proposition 4.1 (A priori estimates [12, Prop. 1.6], [16, Cor. 1.8]). Let f(x, t)
be a classical solution of (nFP). Then for all (x, t) ∈ Td× (0,∞), under Assumptions
(A3) and (A4), the following two sided estimate holds on f(x, t):

exp

(
1

D(x)
min
y∈Td

(
D(y) log

f0(y)

f eq(y)

))
f eq(x)

≤ f(x, t) ≤ exp

(
1

D(x)
max
y∈Td

(
D(y) log

f0(y)

f eq(y)

))
f eq(x).

Also, by using the upper and lower bounds of f eq from Lemma 1.6 of [16], it is possible
to make it the above estimate uniform:

(4.1) m ≤ f(x, t) ≤ M

where m,M > 0 are constants which are independent from x and t.

Theorem 4.2 (Global well-posedness). Under the assumptions (A1), (A2),
(A3), and (A4) there exists a unique positive classical global solution of (nFP) which
belongs to

f ∈ C
2+β,1+β/2
loc (Td × (0,∞)).

Proof. We will construct the solution via induction. Define

R′ := 1 + µ+ 2∥f0∥C0(Td) + 2M

and

T ′1/2 := min

 min{µ, 1, m
4 }

2
(
CR′

(
2R′

γ + |log γ|+ 1
)
∥V ∥sup + 1

) ,( log 2

|Winf|+ |Wsup|+ 1

)1/2


where C > 0 is a constant as in Theorem 2.5 and γ := min{µ, m
4 }. The claim is: for

all j ∈ Z≥1, there is a classical solution of (nFP) on [0, jT ′] satisfying m ≤ f ≤ M .
The base case, j = 1, similarly follows from the arguments that we presented in

Section 3 with the updated values of R′ and T ′. The bounds m ≤ f ≤ M follow from
the a-priori estimate in Proposition 4.1.

Assume now that there exists a classical solution fk of (nFP) on [0, kT ′] satisfying
m ≤ fk ≤ M . Define the following map on the time interval [kT ′, (k + 1)T ′]

Φg(x, t) :=

∫
Td

K(x, t; y, kT ′)fk(y, kT
′)dy

−
∫ t

kT ′

∫
Td

∇yK(x, t; y, s) · ∇D(y, s)

π(y, s)
g(y, s) log g(y, s)dyds
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on the following space

Yk :=
{
g ∈ C0(Td × [kT ′, (k + 1)T ′]) =: Xk

∣∣ g ≥ min
{
µ,

m

4

}
, ∥g∥Xk

≤ R′
}
.

Since, by the inductive hypothesis, we have fk(y, kT
′) ≥ m so, we can argue exactly

as in Lemma 3.3, with m as the lower bound on the initial data now instead of 4µ,
to show that Φ maps Yk to itself. The other parts of the local existence proof are
the same as in the previous section and we conclude the existence of a fixed point

solution of (nFP) gk+1 = Φgk+1 ∈ C
2+β,1+β/2
x,t (Td× [kT ′, (k+1)T ′]). By construction,

fk(y, kT
′) = gk+1(y, kT

′) so the concatenation

fk+1(y, t) :=

{
fk(y, t), if 0 ≤ t ≤ kT ′

gk+1(y, t), if kT ′ ≤ t ≤ (k + 1)T ′

is a fixed point solution of (nFP) on [0, (k+1)T ′], and therefore, by Corollary 3.6, it is
a classical solution of (nFP) on [0, (k+1)T ′]. Consequently, the a-priori estimate (4.1)
applies and m ≤ fk+1 ≤ M . This establishes the inductive hypothesis for j = k + 1.
By induction we conclude the existence of a positive global classical solution f of

(nFP) in C
2+β,1+β/2
loc (Td × (0,∞)).

Moreover, uniqueness follows by a standard argument, since the set of times where
two classical solutions are identical is open by another application of Banach’s fixed
point theorem on the same type of spaces defined above.

REFERENCES
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