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1 The Indefinite Itô Integral . . . . . . . . . . . . . . . . . . . . 179

2 Continuous Martingales in L2(P) . . . . . . . . . . . . . . . . 187

3 The Definite Integral . . . . . . . . . . . . . . . . . . . . . . . 189

4 Quadratic Variation . . . . . . . . . . . . . . . . . . . . . . . . 192
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Preface (Rough outline)

NOT FOR CIRCULATION

• These notes constitute a one-semester first graduate course in probabil-
ity theory at the University of Utah. All of the non-optional chapters,
and all but a handful of the exercises, have been taught and assigned
in a one-semester course. However, it would be possible to offer a
slower-paced course based on Chapters 1–7 only.

In their current state, these are still lecture-notes and not a book; so
please keep in mind that the write-up is occasionally too brief, the
historical discussions are too inconsistent, and the all-around form is
somewhat incomplete.

The final form of this preface will address the following two questions:

• Question: Why probability? Three important addresses: Gne-
denko [Gne69], Doob [Doo89], Mumford [Mum00]. All three present
very convincing reasons for why study probability in the 60’s, 80’s and
00’s. Interestingly enough, the reasons are different in flavor, but also
similar in their essence.

There is also available a recent document that tries to address the “why
probability” question for the forthcoming century. See

http://www.math.cornell.edu/~durrett/probrep/probrep.html.

Ed Waymire and Phil Protter are in the process of writing a expand-
edversion of this report for a Siam publication.

• Question: Why this book? I have found well in excess of 50 graduate
texts in probability! I found that fewer than a handful of them are
written for a one-semester treatment. The present notes take a stab at
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a one-semester curriculum that contains enough probability for many
of today’s graduate students.

Rather than modeling them after other graduate texts (with personal-
ized embellishments), I have decided to follow a route that is closer in
spirit to that of the typical better-thought-out undergraduate probabil-
ity curriculum. Unlike its undergraduate cousins, however, the present
notes are rigorous, and much more importantly, contain recent more
sophisticated advances in this and a few neighboring subjects. I hope
that you will find these notes unapologetic and highly non-encyclopedic
in form.

• So far many thanks are due to: Nelson Beebe, Bob Brooks, and Nat
Smale. Last but certainly not the least, Irina and Adrian Gushin for
their patience and understanding.

• Special Thanks are due to: All my former students, esp. Liz Levina,
Irina Grabovsky, Pando Son, Jim Turner, and Jun Zhang.

Davar Khoshnevisan
Salt Lake City, UT
December 19, 2002
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Measure Theory Primer





Chapter 1

A Crash-Course in Measure
Theory

1 Introduction

Modern probability is spoken in the language of measure theory, and to me
this is where the connections between the two theories begin, as well as end.
It is for this reason that I have tried to minimize the introductory measure-
theoretic discussions that are typically found in probability texts. At the
same time, it is difficult to imagine how one can try to understand many of
the advances of modern probability theory without first learning the requisite
language. As such, we begin these notes with a few brief primer chapters on
measure and integration.

The first part of these notes is self-contained, and the motivated student
can learn enough measure theory here to use the remainder of the notes
successfully. However, the present treatment may be too rapid and perhaps
even too sparse for some. My intention is rather to recall some facts, and
describe ideas that are needed in developing probability theory. To this I
should add that many of the said facts are typically not sufficiently well-
stressed in standard books on measure and integration. So it is best not to
omit this first part in a first reading.

Perhaps the best way to appreciate our need for using measure theory is
to ask, “What is a random variable?”. After all, no matter how they may be
defined, random variables are one of the central objects in probability and
many of its applications.
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Classically, one thinks of a random variable as the numerical outcome of
a random experiment. Moreover, each time we perform our random experi-
ment, we should obtain a “realization” of this random variable that may or
may not be the same as the previous realizations. This is far from an exact
description, and leads to various inaccuracies not to mention some paradoxes.

The modern viewpoint, in rough terms, is the following: We have an
unknown—possibly complicated—function X. Each time we perform our
random experiment, we see the evaluation X(ω) of X at some point ω in the
domain of definition of X, where the point (or “realization”) ω is selected ac-
cording to weights (or “probabilities”) that are predescribed by a probability
measure (or “distribution”).

This description is not as complicated as it may seem, and has the appeal-
ing property that it can be rigorously introduced. As an example, consider
the unit interval [0, 1], and let P(E) denote the “length” of any E ⊆ [0, 1];
more precisely, P is the Lebesgue measure on [0, 1]. Now consider the func-
tion,

X(ω) :=

{
1, if ω ∈ [0, 1

2

]
,

0, if ω ∈ (1
2
, 1
]
.

(1.1)

Note that the P-measure of the set of all ω ∈ [0, 1] such that X(ω) = 1 is
the length of

[
0, 1

2

]
which is 1

2
. This is often written as “P{X = 1} = 1

2
.”

Likewise, P{X = 0} = 1
2
. Viewed as such, X provides us with a mathematical

model for the outcome of a fair coin-toss. For instance, if we observe an ω
such that X(ω) = 1, then this describes having tossed heads. Moreover, such
an event (i.e., X = 1) can happen with probability 1

2
; i.e., for one-half of the

ω’s (in the sense of measure).
In order to study more complicated random variables, we need to have a

much deeper understanding of measures, and measure theory. Having said
this, let us begin with a formal description of aspects of the theory of measure.

2 Measure Spaces

Throughout, let Ω be a set that is sometimes referred to as the sample space.

Definition 1.1 A collection F of subsets of Ω is a σ-algebra if: (i) Ω ∈ F;
(ii) it is closed under complementation, i.e., if A ∈ F then A{ ∈ F; and (iii)
it is closed under countable unions, i.e., if A1, A2, . . . ∈ F, then ∪∞n=1An ∈ F.
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It is an algebra if instead of being closed under countable union, it is merely
closed under finite unions.

Of course, σ-algebras (respectively, algebras) are also closed under count-
able (respectively, finite) intersections, and they also contain the empty set.
Furthermore, any σ-algebra is obviously an algebra but the converse is false:
The collection of all finite unions of subintervals of [0, 1] is an algebra but
not a σ-algebra.

Example 1.2 F = {Ω,?} is a σ-algebra that is aptly called the trivial σ-
algebra. The power set of Ω is also a σ-algebra. (Recall that the power set
of any set is the collection of all of its subsets.) These are the two extremal
examples.

Lemma 1.3 (Hausdorff [Hau27, p. 85]) If I is any set (denumerable or
not), and if Fi is a σ-algebra of subsets of Ω for each i ∈ I, then ∩i∈IFi

is also such a σ-algebra. Consequently, given any algebra A, there exists a
smallest σ-algebra containing A.

Definition 1.4 If A is a collection of subsets of Ω, we write σ(A) for the
smallest σ-algebra that contains A; this is the σ-algebra generated by A.

Note that this is a consistent definition, since σ(A) = ∩F, where the
intersection is taken over all σ-algebras F such that A ⊆ F. Note also that
this is a nonempty intersection since the power set of Ω is at least one such
σ-algebra.

An important class of σ-algebras are introduced in the following.

Definition 1.5 If Ω is a topological space, then the open subsets of Ω gen-
erate a σ-algebra B(Ω) that is called the Borel σ-algebra of Ω.1.1 Elements
of a σ-algebra F are said to be F-measurable, or measurable with respect to
F. When it is clear from the context that F is the σ-algebra under study, its
elements are referred to as measurable. If F is a σ-algebra of subsets of Ω,
a set function µ : F → R+ ∪ {∞} is said to be a measure on (Ω,F) if: (i)
µ(?) = 0; and (ii) given any denumerable collection A1, A2, . . . of disjoint
sets,

µ

( ∞⋃
n=1

An

)
=

∞∑
n=1

µ(An). (1.2)

1.1When Ω = R
d , this is due to Hausdorff [Hau27, pp. 177–181].
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I emphasize that by virtue of their definition (µ : F → R+ and not R),
measures are nonnegative. Of course, real-valued (often called signed) or
complex measures can be defined just as easily.

Definition 1.6 Let S denote a collection of subsets of Ω, and let µ be a set
function on Ω. Then µ is said to be countably additive on S if for all disjoint
sets A1, A2, . . .—all in S—as soon as we have ∪nAn ∈ S, then (1.2) holds.
It is said to be countably subadditive on S if for all A1, A2, . . . ∈ S such that
∪nAn ∈ S, then µ(∪nAn) ≤∑n µ(An).

The following is simple but not entirely obvious if you read the definitions
carefully.

Lemma 1.7 Countably additive set functions are countably subadditive.

Definition 1.8 If F is a σ-algebra of subsets of Ω and if µ is a measure on
(Ω,F), then (Ω,F, µ) is called a measure space.

Listed below are some of the elementary properties of measures:

Lemma 1.9 If (Ω,F, µ) is a measure space, then:

(i) (Continuity from below) If A1 ⊆ A2 ⊆ · · · are all measurable, then as
n→∞ we have µ(An) ↑ µ (∪∞m=1Am).

(ii) (Continuity from above) If A1 ⊇ A2 ⊇ · · · are all measurable, and
if µ(An) < +∞ for some n, then as n → ∞ we have µ(An) ↓
µ (∩∞m=1Am).

Definition 1.10 A measure space (Ω,F, µ) is a probability space if µ(Ω) = 1.
In this case, µ is a probability measure. If instead µ(Ω) < +∞, then µ is a
finite measure. Finally, it is σ-finite if there exist measurable sets Ω1 ⊆ Ω2 ⊆
· · · such that ∪nΩn = Ω and µ(Ωn) < +∞.

We often denote probability measures as P,Q, . . . rather than µ, ν, . . . .

The following result characterizes probability spaces that are based on a
finite set Ω.
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Lemma 1.11 Suppose Ω = {ω1, . . . , ωn} is a finite set. Then, we can find
p1, . . . , pn ∈ [0, 1] such that: (a) p1 + · · · + pn = 1, and (b) for all A ⊆ Ω,
P(A) =

∑
i: ωi∈A pi. Conversely, any sequence p1, . . . , pn ∈ [0, 1] that has the

property (a) above defines a probability measure P on the power set of Ω via
the assignment, P({ωi}) := pi (i = 1, . . . , n).

Definition 1.12 Given any measure space (ω,F), and any x ∈ Ω, we define
the point-mass δx at x to be the probability measure that is defined by setting
δx(A) := 1A(x).

Remark 1.13 In the notation of point-masses, that the probability measure
of Lemma 1.11 can be written as P =

∑n
j=1 δωj

(check!).

3 Lebesgue Measure

Lebesgue measure on (0, 1] gives us a way of measuring the length of a subset
of (0, 1]. To construct the Lebesgue measure then, we first define a set func-
tion m on half-closed finite intervals of the form (a, b] ⊆ (0, 1] that evaluates
the length of the said intervals:

m ((a, b]) = b− a. (1.3)

Let A denote the collection of all finite unions of half-closed subintervals of
(0, 1]. It is easy to see that A is an algebra. We extend the definition of m
to A as follows: For all disjoint half-closed intervals I1, . . . , In ⊆ (0, 1],

m

(
n⋃

i=1

Ii

)
:=

n∑
i=1

m(Ii). (1.4)

This defines m(E) for all E ∈ A. Of course, we need to insure that this
definition is consistent. Consistency follows from induction and the following
obvious fact: For all 0 < a < b < c,

m ((a, c]) = m ((a, b]) +m ((b, c]) . (1.5)

More importantly, we have

Lemma 1.14 The set function m is countably additive on the algebra A.



8 Chapter 1. Measure Theory

That is, whenever A1, A2, . . . are disjoint elements of A such that
∪∞n=1An ∈ A, then m(∪∞n=1An) =

∑∞
n=1m(An). (If there are only finitely

many nonempty An’s, this is an obvious consequence of (1.4).)

Proof Since ∪∞n=1An and ∪N−1
n=1 An are both in A, so is ∪∞n=NAn. Moreover,

m

( ∞⋃
n=1

An

)
=

N−1∑
n=1

m(An) +m

( ∞⋃
n=N

An

)
. (1.6)

It suffices to show that limN→∞m(∪∞n=NAn) = 0. Hence, our goal is this:
Given a sequence of sets Bn ↓ ?—all in A—we wish to show that m(Bn) ↓
0. Suppose to the contrary that there exists ε > 0 so that for all n ≥ 1,
m(Bn) ≥ ε. We will derive a contradiction from this.

Write Bn as a finite union of half-open intervals, viz., Bn := ∪kn
j=1(a

n
j , b

n
j ],

where 0 ≤ an
j < bnj ≤ 1. Also recall that the Bn’s are decreasing. Choose

some αn
j ∈ (an

j , b
n
j ) so close to an

j that αn
j ≤ an

j + ε/(2n+1kn). Then the sets

Bn and Cn ⊆ Bn are close in measure, where Cn := ∪kn
j=1[α

n
j , b

n
j ]. Here is a

measure of how close they are:

m

(
n⋃

j=1

(Bj \ Cj)

)
≤

n∑
j=1

kn∑
i=1

(
αj

i − aj
i

) ≤ ε

2
. (1.7)

In particular, m(Cn) ≥ m(Bn) − (ε/2) ≥ (ε/2). But the Cn’s are closed
bounded and nonempty. If we knew that they were also decreasing, this
and the Heine–Borel property of [0, 1] would together imply that ∩nCn 6= ?,
which cannot be since Cn ⊆ Bn and Bn ↓ ?. This would give us the desired
contradiction. Unfortunately, the Cn’s need not be decreasing. So instead
consider Dn := ∩n

j=1Cj. The Dn’s are closed, bounded, and decreasing. It
suffices to show that they are nonempty. But this is easy: Note that

Bn = Dn ∪
(
Bn ∩D{

n

)
⊆ Dn ∪

(
n⋃

j=1

Bj ∩D{
n

)

= Dn ∪
n⋃

j=1

(Bj \ Cj),

(1.8)

since the Bn’s are decreasing. Therefore, ε ≤ m(Bn) ≤ m(Dn) + ε/2, thanks
to (1.7). This shows that m(Dn) ≥ ε/2, so that Dn 6= ?, and this completes
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the proof of countable additivity. The rest of the proof is smooth sailing (try
it!). �

Lemma 1.14 and the following result immediately extends the domain of
the definition of m to σ(A); the latter is obviously equal to B((0, 1]).

Theorem 1.15 (Carathéodory Extension [Car48]) Suppose Ω is a set,
and A denotes an algebra of subsets of Ω. Then, given a countably additive
set function µ on A, there exists a measure µ̄ on (Ω, σ(A)) such that for all
E ∈ A, µ(E) = µ̄(E). Furthermore, if µ(Ω) < +∞, then the extension µ̄ of
µ is unique, and µ̄ is a finite measure with µ̄(Ω) = µ(Ω).

This result is proved in §5 at the end of this chapter. Note that the
method of this section also yields the Lebesgue measure on R, [0, 1], etc.

To construct the Lebesgue measure on (0, 1]d where d ≥ 1, we proceed
as in the case d = 1, except start by defining the measure of a hypercube∏d

j=1(aj , bj] := {x ∈ (0, 1]d : aj < xj ≤ bj} as
∏d

j=1(bj−aj). Since the collec-

tion of all finite unions of hypercubes is an algebra that generates B((0, 1]d),
we then appeal—as in the one-dimensional case—to the Carathéodory ex-
tension theorem to construct the Lebesgue measure on B((0, 1]d). Further
extensions to [0, 1]d,Rd , etc. are made similarly. It is also possible to con-
struct Lebesgue measure on B(Rd) as a product measure; stay tuned!

Once we have Theorem 1.15, we can easily construct many measures on
the Borel–measurable subsets of Rd as the following shows. This example will
be greatly generalized in the next chapter where we introduce the abstract
integral.

Theorem 1.16 Suppose f : Rd → R+ is a continuous function such that the
Riemann integral

∫
Rd f(x) dx equals 1. Given a, b ∈ Rd with aj ≤ bj for all

j ≤ d, consider the hypercube Ca,b := (a1, b1]× · · · × (ad, bd], and define

µ(Ca,b) :=

∫
Ca,b

f(x) dx. (1.9)

Then µ uniquely extends to a probability measure on (Rd ,B(Rd)), and f is
called the probability density function of µ.
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Proof (Sketch) Let A denote the collection of all finite unions of disjoint
hypercubes of the type mentioned. Then it is easy to see that A is an algebra
of subsets of Rd . If A ∈ A, then we can write A = ∪m

i=1Cai,bi
, and define

µ

(
m⋃

i=1

Cai,bi

)
:=

m∑
i=1

µ(Cai,bi
). (1.10)

One can check that this is a consistent definition. This is an ugly task but
it is not too hard to do. Now we proceed as we did when constructing the
Lebesgue measure in order to show that µ is countably additive on A. Finally,
we appeal to Theorem 1.15 to finish. �

Below are some examples of measures that are important in applications.
I refer to these measures as distributions.

Example 1.17[The Uniform Distribution] Suppose X ∈ B(Rn) has finite
and positive n-dimensional Lebesgue measure m(X). Then, the uniform
distribution ν is the measure defined by ν(A) := m(A ∩ X) ÷m(X) for all
A ∈ B(Rn).

Example 1.18[The Exponential Distribution] Given a number λ > 0,
f(x) := λ exp(−λx) defines a probability density function on (R+ ,B(R+)),
and the corresponding measure is the exponential distribution with para-
meter λ.

Example 1.19[The Normal—or Gaussian—Distribution] Given two con-
stants µ ∈ R and σ ∈ R+ , the normal (or Gaussian) distribution with
parameters µ and σ corresponds to the density function

f(x) :=
1√

2πσ2
exp

(
− 1

2σ2
(x− µ)2

)
, ∀x ∈ R. (1.11)

When µ = 0 and σ = 1, this is the so-called standard normal distribution.
To streamline formulas, we can also define the normal distribution with pa-
rameters µ and σ = 0 as the distribution that corresponds to the probability
measure δµ; i.e., the point-mass at µ. This last case describes the archetypal
degenerate normal distribution since, in this case, X ≡ µ, a.s.
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Example 1.20[The Normal—or Gaussian—Distribution in Rn ] Given a col-
umn vector of constants µ ∈ Rn , and an (n×n) symmetric invertible matrix
Q, the normal (or Gaussian) distribution with parameters µ and Q corre-
sponds to the following density function: For all x ∈ Rn ,

f(x) :=
1

(2π)n/2
√

det(Q)
exp

(
−1

2
(x− µ) ·Q−1(x− µ)

)
. (1.12)

4 Completion

In the previous section we constructed the Lebesgue measure on B((0, 1]d)
(say), and this is good enough for most people’s needs. However, one can
extend the definition of m slightly further by defining m(E) for a slightly
larger class of sets E.

Definition 1.21 Given a measure space (Ω,F, µ), a measurable set E is null
if µ(E) = 0. The σ-algebra F is said to be complete if all subsets of null sets
are themselves (measurable) and null. When F is complete, we also say that
(Ω,F, µ) is complete.

We can always insure completeness, viz.,

Theorem 1.22 Given a measure space (Ω,F, µ), there exists a complete σ-
algebra F′ ⊇ F, and a measure µ′ on (Ω,F′) such that on F, µ and µ′ agree.

Definition 1.23 The above measure space (Ω,F′, µ′) is the completion of
(Ω,F, µ).

Proof of Theorem 1.22 (Sketch) Let A4B := (A ∩ B{) ∪ (A{ ∩ B)
denote the set difference of A and B, and for any two sets A and B define

F′ := {A ⊆ Ω : ∃B,N ∈ F so that µ(N) = 0 and A4B ⊆ N} . (1.13)

In words, we construct F′ by adding in all of the subsets of null sets of F,
and declaring them null.

Step 1. F′ is a σ-algebra.
Since A{4B{ = A4B, F′ is closed under complementation. If A1, A2, . . . ∈
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F′, then we can find B1, B2, . . . ∈ F and null sets N1, N2, . . . such that
Ai4Bi ⊆ Ni for all i ≥ 1. But ∪iAi4 ∪i Bi = ∪i(Ai4Bi) ⊆ ∪iNi, and
the latter is null, thanks to countable subadditivity. Thus, F′ is a σ-algebra.

Step 2. The measure µ′.
For any A ∈ F′ define µ′(A) := µ(B), where B ∈ F is a set such that for a
null set N ∈ F, A4B ⊆ N . It is not hard to see that this is well defined;
i.e., it does not depend on the representation (B,N) of A. Clearly, µ′ = µ
on F; we need to show that µ′ is a measure on (Ω,F′). The only interesting
portion is countable additivity.

Step 3. Countable Additivity.
Suppose A1, A2, . . . ∈ F′ are disjoint. Find Bi, Ni ∈ F as before and note that
whenever j ≤ i, then

Bi+1 ∩Bj ⊆ (Ai+1 ∪N∗) ∩ (Aj ∪N∗) = N∗ (1.14)

where N∗ := ∪iNi is a null set. Define C1 := B1 and iteratively define
Ci+1 := Bi+1\(C1∪· · ·∪Ci). The Ci’s are disjoint, and thanks to the previous
display, Bi+1 ∩ Ci ⊆ N∗; in particular, µ′(Bi+1) = µ′(Bi+1 \ Ci) = µ′(Ci+1).
Since B1 = C1, this shows that for all i, µ(Bi) = µ(Ci); we have used the
fact that µ′ = µ on F. Because the Cj’s are disjoint, and since ∪jCj = ∪jBj,
we obtain

∑
j µ(Bj) = µ(∪jBj). In other words, µ′(∪jAj) =

∑
j µ

′(Aj) and
our task is done. �

If m denotes the Lebesgue measure on (0, 1]d, then we can complete(
(0, 1]d,B((0, 1]d)), m

)
to obtain the probability space

(
(0, 1]d,L((0, 1]d), λ

)
,

where L((0, 1]d) denotes the completion of B((0, 1]d) and is the collection of
all Lebesgue measurable sets in (0, 1]d. Likewise, we could define L([0, 1]d),
L(Rd), etc. We have now defined the Lebesgue measure λ(E) of E ⊂ Rd

for a large class of sets E. Exercise 1.5 shows that one cannot define λ(E)
for all E ⊂ Rd and preserve the all-important translation-invariance of the
Lebesgue measure.

5 Proof of Carathéodory’s Extension Theo-

rem

The proof of Theorem 1.15 is somewhat long, and relies on a set of ingenious
ideas that are also useful elsewhere. Throughout, Ω is a set, and A is an
algebra of subsets of Ω.
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Definition 1.24 A collection of subsets of Ω is a monotone class if it is
closed under increasing unions and decreasing countable intersections.

Lemma 1.25 An arbitrary intersection of monotone classes is a monotone
class. In particular, there exists a smallest monotone class containing A.

Definition 1.26 The smallest monotone class that contains A is written as
mc(A), and is called the monotone class generated by A.

The following result is of paramount use in measure theory:

Theorem 1.27 (The Monotone Class Theorem) Any monotone class
that contains A also contains σ(A). In other words, mc(A) = σ(A).

Before proving this, let us use it to prove the uniqueness assertion of
Carathédory’s extension theorem.

Proof of Theorem 1.15 (Uniqueness) Suppose there were two extensions
µ̄ and ν. Clearly, the collection C := {E ∈ σ(A) : ν(E) = µ̄(E)} is a
monotone class that contains A. Thus, C = σ(A), which is another way of
saying that ν and µ̄ agree on σ(A). �

Proof of Theorem 1.27 Since σ(A) is a monotone class, σ(A) ⊇ mc(A),
and it suffices to show that mc(A) ⊇ σ(A); the proof is nonconstructive.
First, note that the following are monotone classes:

C1 :=
{
E ∈ σ(A) : E{ ∈ mc(A)

}
,

C2 := {E ∈ σ(A) : ∀F ∈ σ(A), E ∪ F ∈ mc(A)} .
(1.15)

Since C1 is a monotone class that contains A, we have C1 ⊇ mc(A), and this
means that mc(A) is closed under complementation. If we also knew that
A ⊆ C2, then we could deduce that C2 ⊇ mc(A), which would imply that
mc(A) is closed under finite unions and is therefore a σ-algebra. This would
show that mc(A) ⊇ σ(A) and complete our proof. However, proving that
A ⊆ C2 requires one more idea. Consider

C3 := {E ∈ σ(A) : ∀F ∈ A, E ∪ F ∈ mc(A)} . (1.16)

Since it is a monotone class that contains A, C3 ⊇ mc(A) and in particular,
C3 ⊇ A. By reversing the roles of E and F in the definition of C2, we can see
that C2 ⊇ A as well, and this is what we needed to prove. �
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Proof of Theorem 1.15 (Existence; Optional) Producing a completely
rigorous proof takes too much effort, so I will outline a proof instead. The
main idea is to try and prove more. Namely, we will define, in a natural way,
µ̄(E) for all E ⊆ Ω. This defines a set function µ̄ on the power set P or Ω
which maybe too big a σ-algebra in the sense that µ̄ may fail to be countably
additive on P. However, it will be countably additive on σ(A). Now, we fill
in more details.

For all E ⊆ Ω, define

µ̄(E) := inf

{ ∞∑
n=1

µ(En) : ∀j ≥ 1, Ej ∈ A and E ⊆
∞⋃

n=1

En

}
. (1.17)

In other words, the infimum is taken over all sequences E1, E2, . . . in A that
cover E. This ought to be a natural and appealing extension of µ. The proof
proceeds in three steps.

Step 1. Countable Subadditivity of µ̄.
First, one shows that µ̄ is countably subadditive on P. (In the jargon of
measure theory, µ̄ is an outer measure on (Ω,P).) Indeed, we wish to show
that for any A1, A2, . . ., all subsets of Ω, µ̄(∪∞n=1An) ≤ ∑∞

n=1 µ̄(An). To
this end, consider any collection (Aj,n) of elements of A such that for all n,
An ⊆ ∪∞j=1Aj,n. By the definition of µ̄, µ̄(∪∞n=1An) ≤ ∑∞

n=1

∑∞
j=1 µ(Aj,n).

On the other hand, once more using the definition of µ̄, we see that for any
ε > 0, we could choose the Aj,n’s such that

∑∞
j=1 µ(Aj,n) ≤ ε2−n + µ̄(An).

This yields, µ̄(∪∞n=1An) ≤ ε +
∑∞

n=1 µ̄(An), which is the desired countable
subadditivity of µ̄, since ε > 0 is arbitrary.

Step 2. µ̄ extends µ.
Next one shows that µ̄ and µ agree on A so that µ̄ is indeed an extension of µ.
Since for all E ∈ A, µ̄(E) ≤ µ(E), we seek to prove the converse inequality.
Consider any collection E1, E2, . . . of elements of A that covers E. For any
ε > 0, we can arrange things so that

∑∞
n=1 µ(En) ≤ µ̄(E) + ε. Since µ is

countably additive on A, µ(E) ≤ µ(∪∞n=1En) ≤ ∑∞
n=1 µ(En) ≤ µ̄(E) + ε.

Since ε > 0 is arbitrary, Step 2 is completed.
Step 3. Countable Additivity.

We now complete our proof by showing that the restriction of µ̄ to σ(A)
is countably additive. Thanks to Step 1, it suffices to show that for all
disjoint A1, A2, . . ., all in σ(A),

∑∞
n=1 µ̄(An) ≤ µ̄(∪∞n=1An). With this in

mind, consider

M :=
{
E ⊆ Ω : ∀F ∈ A, µ̄(E) = µ̄

(
E ∩ F )+ µ̄

(
E ∩ F {

)}
. (1.18)
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According to Step 2, M contains A. Thus, thanks to the monotone class
theorem, if M were a monotone class, then σ(A) ⊆ M. This shows that
µ̄ is finitely additive on σ(A), which in turn implies that for any N ≥ 1,
µ̄(∪∞n=1An) ≥ µ̄

(∪N
n=1An

)
=
∑N

n=1 µ̄(An), since the An’s were disjoint. Step
3—whence the Carathédory extension theorem—follows from this upon let-
ting N ↑ ∞. Owing to Step 1, it suffices to show that the following is a
monotone class:{

E ⊆ Ω : ∀F ∈ A, µ̄(E) ≥ µ̄
(
E ∩ F )+ µ̄

(
E ∩ F {

)}
. (1.19)

This is proved by appealing to similar covering arguments that we used in
Steps 1 and 2. �

6 Exercises

Exercise 1.1 Prove Lemma 1.3.

Exercise 1.2 Prove Lemma 1.9.
(Hint: Any countable union can be expressed as a disjoint countable union.)

Exercise 1.3 Prove Lemma 1.11.

Exercise 1.4 Prove Lemma 1.25.

Exercise 1.5 Prove that Lebesgue measure is translation invariant, i.e., the
measure of x+A is the same as the measure of A provided x+A and A are
Borel measurable. Here, x+A := {x+y; y ∈ A}. Furthermore, if mα denotes
the Lebesgue measure on ([0, α],B([0, α])) for a given α > 0, prove that for
all measurable A ⊆ [0, α], α−1A is in B([0, 1]), and mα(A) = αm1(α

−1A). In
other words, prove that Lebesgue measure is also scale invariant.

Exercise 1.6 Suppose (Ω,F, µ) is a measure space. Let Ω′ be a set, and let
F′ denote a σ-algebra of subsets of Ω′. If f : Ω → Ω′ is measurable, show
that µ ◦ f−1 is a measure on (Ω′,F′), where

µ ◦ f−1(A) := µ ({ω ∈ Ω : f(ω) ∈ A}) . (1.20)
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Exercise 1.7 In this exercise we construct a set in the circle S1 that is not
Borel measurable. As usual, we can think of S1 as a subset of C :

S1 :=
{
eiθ : θ ∈ (0, 2π]

}
. (1.21)

1. Given any z = eiα, w = eiβ ∈ S1, we write z ∼ w if α− β is a rational
number. Show that this defines an equivalence relation on S1.

2. Use the axiom of choice to construct a set Λ whose elements are one
from each ∼-equivalence class of S1.

3. For any rational α ∈ (0, 2π], define Λα := eiαΛ denote the rotation of
Λ by angle α, and check that if α, β ∈ (0, 2π] ∩ Q are distinct, then
Λα ∩ Λβ = ?.

4. Let µ denote the Lebesgue on (S1,B(S1)), and show that µ(Λ) is not
defined. Lebesgue measure on S1 is defined as m ◦ f−1, where m is the
Lebesgue measure on (0, 2π], and f : (0, 2π] → S1 is an isometry; cf.
(1.20) for the definition of m ◦ f−1.
(Hint: Note that S1 = ∪α∈(0,2π]∩QΛα is a countable disjoint union.)

5. Conclude that Λ is not Borel measurable.



Chapter 2

A Crash-Course in Integration

1 Introduction

We are ready to define nearly-household terms such as “random variables,”
“expectation,” “standard deviation,” and “correlation.” To give a brief pre-
view of what we are about to see, let me mention:2.1

• A random variable X is a measurable function.

• The expectation E{X} is the integral
∫
X dP of the function X with

respect to the underlying probability measure P.

• The standard deviation and the correlation are the expectations of
certain types of random variables.

Thus, in this chapter I will describe measurable functions, as well as the ab-
stract integral

∫
X dP, together with many of its salient features. Through-

out, (Ω,F, µ) denotes a a measure space.

2 Measurable Functions

Definition 2.1 A function f : Ω → Rn is (Borel) measurable if for all E ∈
B(Rn), f−1(E) ∈ F. Measurable functions on probability spaces are often
referred to as random variables, and written as X, Y, . . . instead of f, g . . . .
In the context of probability spaces, measurable sets are often referred to as
events.

2.1This viewpoint is due to Fréchet [Fré30].
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Since f−1(E) := {ω ∈ Ω : f(ω) ∈ E}, f is measurable (equivalently, f is
a random variable) if and only if the preimages of measurable sets under f
are themselves measurable.

Example 2.2 An important example of a measurable function is the indi-
cator function of a measurable set. Indeed, suppose A ∈ F and define the
indicator of A as the function,

1A(ω) :=

{
1, if ω ∈ A,
0, if ω ∈ A{.

(2.1)

We have already seen such functions in (1.1).
Note that quite generally, 1A : Ω → R, and consider 1−1

A (E) for a mea-
surable A ⊆ R. It is easy to see that

1−1
A (E) =


A, if 1 ∈ E but 0 ∈ E{,

A{, if 0 ∈ E but 1 ∈ E{,

Ω, if 0, 1 ∈ E,
?, if 0, 1 ∈ E{.

(2.2)

Since A ∈ F, it follows that 1A is measurable.

Checking the measurability of a function can be a painful chore. The
following alleviates some of the pain most of the time.

Lemma 2.3 Suppose that A is an algebra of subsets of B(Rn), and that for
all A ∈ A, f−1(A) ∈ F. Then, f : Ω → Rn is measurable.

Proof Since {A ∈ A : f−1(A) ∈ F} is a monotone class, the lemma follows
from the monotone class theorem (Theorem 1.27). �

Let us use the above to produce some measurable functions next.

Lemma 2.4 Suppose f, f1, f2, . . . : Ω → Rn and g : Rn → Rm .

(i) If g : Rn → Rm is continuous, then it is measurable.

(ii) If f, f1, f2 are measurable, then so are αf for any α ∈ R, f1 + f2, and
f1 × f2.
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(iii) If f1, f2, . . . are measurable, then so are supn fn, infn fn, lim supn fn,
and lim infn fn.

(iv) If g and f are measurable, then so is their composition g ◦ f = g(f).

Proof I will prove this to remind you of the flavor of the subject.

If g : Rn → Rm is continuous, then for all open sets G ⊆ Rm , g−1(G) is
open (and hence Borel measurable) in Rn . Part (i) follows from Lemma 2.3.
The functions g(x) := αx and g(x, y) := x + y and g(x, y) := xy are all
continuous on the appropriate Euclidean spaces. So if we proved (iv), then
(ii) would follow from (i) and (iv). But (iv) is an elementary consequence of
the identity: (g ◦ f)−1(A) = f−1(g−1(A)). It remains to prove (iii).

Let S(ω) := supn fn(ω) and note that for all x ∈ R, S−1((−∞, x]) =
∩nf

−1
n ((−∞, x]) ∈ F. Consequently, for all reals x < y, S−1((x, y]) =

S−1((−∞, y]) \ S−1((∞, x]) ∈ F. The collection of finite disjoint unions
of sets of the form (y, x] is an algebra that generates B(R). Therefore,
by Lemma 2.3, supn fn is measurable. Apply (iv) to g(x) = −x to see
that infn fn = − supn(−fn) is also measurable. But we have lim supn fn =
infk supn≥k fn := infk hk, where hk := supn≥k fn. Since denumerably many
suprema and infima preserve measurability, lim supn fn is measurable. Fi-
nally, the lim inf is measurable since lim infn fn = − lim supn(−fn). �

3 The Abstract Integral

Throughout this part (Ω,F, µ) denotes a finite measure space unless we ex-
plicitly specify that µ is σ-finite.

We now wish to define the integral
∫
f dµ for measurable functions f :

Ω → R. Much of what we do here works for σ-finite measure spaces using
the following localization method: Find disjoint measurable K1, K2, . . . such
that ∪nKn = Ω and µ(Kn) < +∞. Define µn to be the restriction of µ to
Kn, i.e., µn(A) := µ(Kn ∩ A) for all A ∈ F. It is easy to see that µn is a
finite measure on (Ω,F). Apply the integration theory of this module to µn,
and combine the integrals:

∫
f dµ :=

∑
n

∫
f dµn. For us, the details are not

worth the effort. After all, probability measures are finite!

The abstract integral is derived in three steps.
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3.1 Elementary and Simple Functions

When f is a nice function,
∫
f dµ is easy to define. Indeed, suppose f = c1A

where A ∈ F and c ∈ R. Such functions are called elementary functions.
Then, we define

∫
f dµ := cµ(A).

More generally, suppose A1, . . . , An ∈ F are disjoint, α1, . . . , αn ∈ R, and
f :=

∑n
j=1 αj1Aj

. This is measurable by Lemma 2.4, and such functions are

called simple functions. For them, we define
∫
f dµ :=

∑n
j=1 αjµ(Aj). This

is well defined; in other words, writing a simple function f in two different
ways does not yield two different integrals. One proves this first in the case
where f is an elementary function. Indeed, suppose f = a1A = b1B + c1C ,
where B,C are disjoint. It easily follows from this that a = b = c and
A = B ∪C. Therefore, by the finite additivity of µ, aµ(A) = bµ(B)+ cµ(C),
which is another way of saying that our integral is well defined in this case.
The general case follows from this, the next lemma, and induction.

Lemma 2.5 If f is a simple function, then so is |f |. If f ≥ 0 pointwise,
then

∫
f dµ ≥ 0. Furthermore, if f, g are simple functions, then for a, b ∈ R,∫

(af + bg) dµ = a

∫
f dµ+ b

∫
f dµ. (2.3)

In other words, for simple functions, f 7→ ∫
f dµ is a nonnegative linear

functional. A consequence of this is that whenever f ≤ g are simple functions,
then

∫
f dµ ≤ ∫

g dµ. In particular, we also have the following important
consequence: | ∫ f dµ| ≤ ∫ |f | dµ.

3.2 Bounded Measurable Functions

Suppose f : Ω → R is bounded and measurable. To define
∫
f dµ we use the

following to approximate f by simple functions.

Lemma 2.6 If f : Ω → R is bounded and measurable, then we can find
simple functions f

n
, fn (n = 1, 2, · · · ) such that f

n
↑ f , fn ↓ f , and fn ≤

f
n

+ 2−n pointwise.

By combining this with Lemma 2.5 we can see that

• ∫ f
n
dµ ≤ ∫ fn dµ ≤

∫
f

n
dµ+ 2−nµ(Ω), for all n ≥ 1; and
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• ∫ f dµ := limn

∫
f

n
dµ = limn

∫
fn dµ exists and is finite.

This produces an integral
∫
f dµ that inherits the properties of

∫
fn dµ and∫

f
n
dµ described by Lemma 2.5. That is,

Lemma 2.7 If f is a bounded measurable function, then so is |f |. If f ≥ 0
pointwise, then

∫
f dµ ≥ 0. Furthermore, if f, g are bounded and measurable

functions, then for a, b ∈ R,∫
(af + bg) dµ = a

∫
f dµ+ b

∫
f dµ. (2.4)

3.3 The General Case

We now define
∫
f dµ for any measurable f : Ω → R+ (note: these functions

are nonnegative!). To do so, define fn := min(f, n), which is measurable
thanks to Lemma 2.3. Of course, 0 ≤ fn(ω) ≤ f(ω) and fn(ω) ↑ f(ω) at
every point ω ∈ Ω. In particular,

∫
fn dµ is an increasing sequence thanks to

Lemma 2.7. Its limit (which could be +∞) is denoted by
∫
f dµ, and inherits

the properties of the integrals for bounded integrands.
In order to define the most general integral of this type, let us consider

an arbitrary measurable function f : Ω → R and write f = f+ − f−

where f+(ω) := max{f(ω), 0} and f−(ω) := −max{−f(ω), 0}. Both f±

are measurable (Lemma 2.5), and if
∫ |f | dµ < +∞, then define

∫
f dµ :=∫

f+ dµ− ∫ f− dµ. This integral has the following properties.

Proposition 2.8 Let f be a measurable function such that
∫ |f | dµ < +∞.

If f ≥ 0 pointwise, then
∫
f dµ ≥ 0. If g is another measurable function with∫ |g| dµ < +∞, then for a, b ∈ R,∫

(af + bg) dµ = a

∫
f dµ+ b

∫
g dµ. (2.5)

Our arduous construction is over, and gives us an “indefinite integral.”
We can get “definite integrals” as follows: For any A ∈ Ω, define∫

A

f dµ :=

∫
f1A dµ, (2.6)

and this is well-defined as long as
∫

A
|f | dµ < +∞. In particular, note that∫

Ω
f dµ =

∫
f dµ.
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Remark 2.9 Occasionally, we write
∫
f(ω)µ(dω) in place of

∫
f dµ.

Definition 2.10 We say that f is integrable (with respect to the measure µ)
if
∫ |f | dµ < +∞. On occasion, we will write

∫
f(ω)µ(dω) for the integral∫

f dµ. This will be useful later when f will have other variables in its
definition, and the µ(dω) reminds us to “integrate out the ω variable.”

Definition 2.11 When (Ω,F,P) is a probability space, and when X : Ω →
R is a random variable, we write E{X} :=

∫
X dP and call this integral the

expectation of X. When A ∈ F, i.e., when A is an event, we may write
E{X;A} in place of the more cumbersome E{X1A} or

∫
A
X dP.

4 Modes of Convergence

There are many ways in which a function can converge. We will be primarily
concerned with the following. Throughout, (Ω,F, µ) is a measure space, and
f, f1, f2, . . . : Ω → R are measurable.

Definition 2.12 We say that fn converges to f µ-almost everywhere (writ-
ten µ-a.e. or a.e. if it is clear which measure is being referred to) if

µ

{
ω ∈ Ω : lim sup

n→∞
|fn(ω)− f(ω)| > 0

}
= 0. (2.7)

In order to expedite the notation, we will write {f ∈ A} for {ω ∈ Ω :
f(ω) ∈ A} and µ{f ∈ A} for µ({f ∈ A}). In this way, fn → f a.e. if and
only if µ{fn 6→ f} = 0. In the case (Ω,F,P) is a probability space, and
when X,X1, X2, . . . are random variables on this space, then we say that Xn

converges to X almost surely (written a.s.) in place of almost everywhere.

One also has the following.

Definition 2.13 We say that fn → f in Lp(µ) if limn→∞ ‖fn− f‖p = 0. We
say that fn → f in measure if for all ε > 0, limn→∞ µ {|fn − f | ≥ ε} = 0.
When (Ω,F,P) is a probability space, and when X,X1, X2, . . . are random
variables on this space, we say that Xn converges to X in probability if
limn P{|Xn − X| ≥ ε} = 0 for all ε > 0. Sometimes we may write this as

Xn
P→ X.
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Here are how the notions of convergence are related:

Theorem 2.14 Either almost-everywhere convergence or Lp-convergence
implies convergence in measure.

[We will soon see that the converse is false.] The interesting portion of
this result relies on

Theorem 2.15 (Markov’s Inequality) If f is a nonnegative element of
L1(µ), then for all λ > 0,

µ {f ≥ λ} ≤ 1

λ

∫
{f≥λ}

f dµ ≤ 1

λ
‖f‖1. (2.8)

Proof Notice that ‖f‖1 =
∫
f dµ ≥ ∫{f≥λ} f dµ ≥ λµ{f ≥ λ}. Divide by

λ > 0 to finish. �

Corollary 2.16 (Chebyshev’s Inequality) 2.2 For any p > 0, f ∈ Lp(µ),
and λ > 0,

µ{|f | ≥ λ} ≤ 1

λp

∫
{f≥λ}

|f |p dµ ≤ 1

λp
‖f‖p

p. (2.9)

Proof Since µ{|f | ≥ λ} = µ{|f |p ≥ λp}, we can apply Markov’s inequality
to the function |f |p to finish. �

Proof of Theorem 2.14 Thanks to Chebyshev’s inequality, convergence in
Lp(µ) implies convergence in measure since µ{|fn−f | ≥ ε} ≤ ε−p‖fn−f‖p

p →
0. To prove that a.e.-convergence implies convergence in measure, we need
to understand a.e.-convergence better. Indeed, note that fn → f if and only
if

µ

( ∞⋃
`=1

∞⋂
N=1

∞⋃
n=N

{
|fn − f | ≥ 1

`

})
= 0. (2.10)

2.2Chebyshev was the first to develop such concentration inequalities; see Chebyshev
[Che46, Che67]. Markov, who was a student of Chebyshev at the time, noted the full
power of Chebyshev’s inequality.
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Since µ is continuous from above, this is equivalent to the following: For all
ε > 0,

lim
N→∞

µ

( ∞⋃
n=N

{|fn − f | ≥ ε}
)

= 0. (2.11)

But the above measure is clearly greater than or equal to µ{|fN − f | ≥ ε},
which implies convergence in measure. �

Here are two examples to test the strength of the relations between the
various modes of convergence. The first also introduces the Borel–Steinhaus
probability space which was a starting-point of modern probability theory.

Example 2.17[The Borel–Steinhaus Space] Define Ω := [0, 1], P := the
Lebesgue measure on Ω, and F := B(Ω). For all ω ∈ [0, 1] define,

Xn(ω) :=

{
na, if ω < 1

n
,

0, if ω ≥ 1
n
,

(2.12)

where a > 0 is fixed. Then Xn → 0 almost surely (in fact for all ω ∈ (0, 1]),
but for p ≥ a−1, ‖Xn‖p

p = nap−1 is bounded away from 0, so a.s.-convergence
does not imply Lp-convergence. The trouble comes from the evident fact
that supn |Xn| is not in Lp(P) here. Indeed, if supn |Xn|p were integrable,
then a.s.-convergence would imply Lp-convergence thanks to the dominated
convergence theorem; (Theorem 2.22).

Example 2.18 Let (Ω,F,P) be the Borel–Steinhaus probability space of
the previous example. We will now construct a family of random variables
Xn such that limnXn(ω) does not exist for any ω ∈ [0, 1]—in particular,
Xn does not converge a.s.—and yet limn ‖Xn‖p = 0 for all p > 0. This
construction may look complicated on paper but is completely apparent once
you draw a picture of the Xn’s. We define a “triangular array” of functions
fi,j (∀i ≥ 1, j ≤ 2i−1) as follows: First let f1,1(ω) := 1 for all ω ∈ (0, 1].
Then define

f2,1(ω) :=

{
2, if ω ∈ (0, 1

2

]
0, otherwise

,

f2,2(ω) :=

{
0, if ω ∈ (1

2
, 1
]

2, otherwise
, . . . .

(2.13)
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In general, for all i ≥ 1 and j = 1, . . . , 2i−1, we can define a function fi,j

by fi,j := i1((j−1)2−i−1,j2−i−1]. Let us enumerate the fi,j ’s according to the
dictionary ordering, and call the resulting relabeling (Xk); i.e., X1 := f1,1,
X2 := f2,1, X3 := f2,2, X4 := f3,1, X5 := f3,2, . . . . It is clear that for all
ω ∈ (0, 1], lim supk→∞Xk(ω) = +∞, whereas lim infk→∞Xk(ω) = 0. In
particular, the random variables X1, X2, . . . do not possess limits at any ω.
On the other hand, note that ‖fi,j‖p = ip2−(i−1). Consequently, Xk → 0 in
Lp(µ) for all p > 0 even though there are no a.s. limits.

5 Lebesgue’s Convergence Theorems

Proposition 2.8 expresses two of the most important properties of the abstract
integral: (i) Integration is a positive operation (i.e., if f ≥ 0, then

∫
f dµ ≥

0); and (ii) it is a linear operation (i.e., equation 2.5). We now turn to some of
the other important properties of the abstract Lebesgue integral that involve
limiting operations. Recall that unless it is stated otherwise, all measures
are assumed to be finite.2.3

Theorem 2.19 (Bounded Convergence) Suppose f1, f2, . . . are measur-
able functions such that supn |fn| is bounded by some constant K. If fn → f
in measure, then

lim
n→∞

∫
fn dµ =

∫
f dµ. (2.14)

Proof Since |f | ≤ K pointwise, and since µ is a finite measure, f is
also integrable so that the integrals all exist. Now fix an ε > 0 and let
En := {ω ∈ Ω : |f(ω)− fn(ω)| > ε}. Then, by Proposition 2.8,∣∣∣∣∫ f dµ−

∫
fn dµ

∣∣∣∣ ≤ ∫ |f − fn| dµ

=

∫
E{

n

|f − fn| dµ+

∫
En

|f − fn| dµ

≤ εµ(Ω) + 2Kµ(En).

(2.15)

2.3Much of the material of this section was developed by Lebesgue [Leb10]. Notable
exceptions are the monotone convergence theorem (Theorem 2.21) of Levi [Lev06], and
Fatou’s lemma (Theorem 2.20) of Fatou [Fat06].
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As n→∞, µ(En) → 0. We can then let ε ↓ 0 to finish. �

Theorem 2.20 (Fatou’s Lemma) If µ is σ-finite, then for any sequence
of integrable nonnegative functions, f1, f2, . . .,∫

lim inf
n→∞

fn dµ ≤ lim inf
n→∞

∫
fn dµ. (2.16)

Proof I first prove this under the additional condition that µ(Ω) < +∞.
Let gn := infj≥n fj and note that as n → ∞, we have gn ↑ f := lim infk fk

pointwise. In particular, for any constantK > 0, (f∧K−gn∧K) is a bounded
measurable function that converges to 0 pointwise as n→∞. Thus, by the
bounded convergence theorem (Theorem 2.19), and since gn ≤ fn,

lim inf
n→∞

∫
fn dµ ≥ lim

n

∫
(gn ∧K) dµ =

∫
(f ∧K) dµ. (2.17)

It suffices to show that

lim
K↑∞

∫
(f ∧K) dµ =

∫
f dµ. (2.18)

Now for any ε > 0, find a simple function S such that: (i) 0 ≤ S ≤ f
pointwise; (ii) there exists C > 0 such that S(ω) ≤ C; and (iii)

∫
S dµ ≥∫

f dµ − ε. Now
∫

(f ∧ K) dµ ≥ ∫
(S ∧ K) dµ =

∫
S dµ ≥ ∫

f dµ − ε if
K > C. This proves (2.18) and hence the result in case µ is finite. In the
general σ-finite case, for any ε > 0, we can find a measurable set Γ such that
µ(Γ) < ∞, and

∫
Γ
f dµ ≥ ∫

f dµ − ε. What we showed in the finite case
shows that lim infn

∫
Γ
fn dµ ≥

∫
Γ
f dµ ≥ ∫ f dµ− ε. Since ε > 0 is arbitrary,

this completes our proof. �

Theorem 2.21 (Monotone Convergence) If µ is a σ-finite measure,
fn ↑ f are all nonnegative and measurable, and f is integrable [dµ], then∫
fn dµ ↑

∫
f dµ.

Proof We have
∫
fn dµ ≤

∫
f dµ, and Fatou’s lemma does the rest. �
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Theorem 2.22 (Dominated Convergence) Suppose µ is σ-finite, and
f1, f2, . . . is a sequence of measurable functions such that supm |fm| is in-
tegrable. Then, limn

∫
fn dµ =

∫
limn fn dµ provided that limn fn exists.

Proof Define gn := supj≥n fj, and note that as n → ∞, gn ↓ f :=
limk fk. Since (gn − f) is a sequence of nonnegative measurable functions
that convergence down to 0, the monotone convergence theorem implies that∫

(gn − f) dµ→ 0. Because gn ≥ fn, this shows that

lim sup
n→∞

∫
fn dµ ≤

∫
f dµ. (2.19)

For the converse, define hn := infj≥n fj and note that (f−hn) ↓ 0. Apply the
monotone convergence theorem once more to obtain

∫
f dµ = limn

∫
hn dµ ≤

lim infn

∫
fn dµ. Together with the preceding display, this does the job. �

6 Lp-Spaces

Throughout this section (Ω,F,P) denotes a probability space.
We can define for all p ∈ (0,∞) and all random variables X : Ω → R,

‖X‖p := (E{|X|p}) 1
p , (2.20)

provided that the integral exists; i.e., that |X|p is P-integrable.

Definition 2.23 The space Lp(P) is the collection of all random variables
X : Ω → R that are p-times P-integrable. More precisely, these are the
random variables X such that ‖X‖p < +∞.

Remark 2.24 More generally, if (Ω,F, µ) is a σ-finite measure space, then
Lp(µ) will denote the collection of all measurable functions f : Ω → R such
that ‖f‖p < +∞. Occasionally, I write ‖f‖Lp(µ) and Lp(Ω,F, µ) respectively
in place of ‖f‖p and Lp(µ) to emphasize that the underlying (possibly σ-
finite) measure space is (Ω,F, µ).

Next I list some of the elementary properties of Lp-spaces. Note that the
following properties do not rely on the finiteness of µ.
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Theorem 2.25 If µ is a σ-finite measure, then:

(i) For all a ∈ R and f ∈ Lp(µ), ‖af‖p = |a| · ‖f‖p, and whenever f, g ∈
Lp(µ), so is f + g. In particular, Lp(µ) is a linear space.

(ii) (Hölder’s Inequality) Suppose p > 1 and define its so-called conjugate
q by p−1 +q−1 = 1. Then, ‖fg‖1 ≤ ‖f‖p · ‖g‖q, provided that f ∈ Lp(µ)
and g ∈ Lq(µ).

(iii) (Minkowski’s Inequality) If f, g ∈ Lp(µ) for some p ≥ 1, then ‖f +
g‖p ≤ ‖f‖p + ‖g‖p.

Proof It is clear that ‖af‖p = |a| · ‖f‖p. On the other hand, note that for
x, y ∈ R, |x+y|p ≤ 2p{|x|p+|y|p}. Consequently, ‖f+g‖p

p ≤ 2p{‖f‖p
p+‖g‖p

p},
and this proves part (i).

Hölder’s inequality holds trivially if ‖f‖p or ‖g‖p are equal to 0. Thus,
we can assume without loss of generality that ‖f‖p, ‖g‖p > 0. Let φ(x) :=
p−1xp + q−1yq − xy (x ≥ 0), where y ≥ 0 is fixed, and observe that φ
is minimized at x = yq/p and the minimum value is 0. In other words,
xy ≤ p−1xp + q−1yq. Replace x and y by F (ω) := |f(ω)|/‖f‖p and G(ω) :=
|g(ω)|/‖g‖q respectively, and integrate to obtain

‖fg‖1

‖f‖p · ‖g‖q

=

∫
|FG| dµ ≤ ‖F‖p

p
+
‖G‖q

q
=

1

p
+

1

q
= 1. (2.21)

Minkowski’s inequality follows from Hölder’s inequality as follows: Since
|x + y|p ≤ |x| · |x + y|p−1 + |y| · |x + y|p−1, by Hölder’s inequality, for any
α > 1,∫

|f + g|p dµ ≤
∫
|f | · |f + g|p−1 dµ+

∫
|g| · |f + g|p−1 dµ

≤ {‖f‖α + ‖g‖α} ·
(∫

|f + g|β(p−1) dµ

)1/β

,

(2.22)

where β is the conjugate to α; i.e., α−1 + β−1 = 1. Choose α = p and note
that β = q solves β(p− 1) = p. This yields

‖f + g‖p
p ≤ {‖f‖p + ‖g‖p} · ‖f + g‖p−1

p . (2.23)

If ‖f + g‖p = 0, Minkowski’s inequality holds trivially; else, we can solve the
preceding display to finish. �
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An important special case of Hölder’s inequality is the following. While
it is an immediate consequence (set p := 2), it is sufficiently important that
it deserves special mention.

Corollary 2.26 (The Cauchy–Bunyakovsky–Schwarz Inequality) If f, g ∈
L2(µ), then | ∫ fg dµ| ≤ ‖f‖2 · ‖g‖2.

Definition 2.27 A function ψ : R → R is convex if for all λ ∈ [0, 1] and all
x, y ∈ R, ψ (λx+ (1− λ)y) ≤ λψ(x) + (1− λ)ψ(y).

Theorem 2.28 (Jensen’s Inequality) Suppose µ is a probability measure.
If ψ : R → R is convex and if ψ(f) and f are integrable, then

∫
ψ(f) dµ ≥

ψ
(∫

f dµ
)
.

Example 2.29 Since ψ(x) := |x| is convex, the above contains the tri-
angle inequality:

∫ |f | dµ ≥ | ∫ f dµ|. A second noteworthy example is:∫
ef dµ ≥ e

∫
f dµ since ψ(x) := ex is convex. These two examples do not

require integrability (why?).

Proof Since ψ is convex, there are affine2.4 functions {ψz}z∈R such that

ψ(x) = sup
z∈R

ψz(x), ∀x ∈ R+ . (2.24)

Therefore, by Proposition 2.8,∫
ψ(f) dµ ≥ sup

z∈R

∫
ψz(f) dµ = sup

z∈R
ψz

(∫
f dµ

)
. (2.25)

(Here is where we need µ to be a probability measure.) The right-hand side
is equal to ψ

(∫
f dµ

)
which yields the result. To complete this proof, we

need to verify (2.24). But this too is easy to prove (draw a picture!). For
any ε > 0, define

D+
ε ψ(x) :=

ψ(x+ ε)− ψ(x)

ε
. (2.26)

Since λε + x = λ(x + ε) + (1 − λ)x, for all λ ∈ [0, 1], ψ(λε + x) ≤ λψ(x +
ε) + (1− λ)ψ(x). Collect terms to deduce that for all λ ∈ [0, 1], D+

ε ψ(x) ≥
D+

λεψ(x). In other words, ε 7→ D+
ε ψ(x) is increasing, and this means that

2.4Recall that h is affine if it is of the form h(x) = ax + b.
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D+ψ(x) := limε↓0D+
ε ψ(x) exists. For each fixed z ∈ R and ε > 0, define the

affine function

ψε
z(x) := (x− z)D+

ε ψ(z) + ψ(z), ∀x ∈ R. (2.27)

Then you should check that:

• ψε
z is affine and hence so is ψz(x) := limε↓0 ψε

z(x).

• ψε
z(z) = ψ(z) and ψε

z(z + ε) = ψ(z + ε). In particular, ψz(z) = ψ(z).

• For all δ > 0, ψε
z(x) ≤ ψε+δ

z (x) whenever x ≥ z, and ψε
z(x) ≥ ψε+δ

z (x)
whenever x ≤ z.

The last two observations together imply that ψε
z(x) ≤ ψ(x) for all x 6∈

(z, z + ε). Let ε ↓ 0 to see that ψz(x) ≤ ψ(x) and ψz(z) = ψ(z). This proves
(2.24). �

An important consequence of this is that in the case that µ is finite, the
Lp-spaces are nested.

Proposition 2.30 (Monotonicity of Lp-Spaces) If µ(Ω) < +∞ and r >
p ≥ 1, then Lr(µ) ⊆ Lp(µ). In fact, for all f ∈ Lr(µ),

‖f‖p ≤ [µ(Ω)]
1
p
− 1

r · ‖f‖r. (2.28)

Proof We will derive the displayed inequality; the proposition follows
readily from that. Since this is a result that only involves the function |f |, we
can assume without loss of generality that f ≥ 0. Furthermore, by replacing
f by f ∧K, proving (2.28) with f replaced by f ∧K, and then letting K ↑ ∞
(Theorem 2.21 justifies this part), we can assume without loss of generality
that f is bounded and hence in Lv(µ) for all v > 0.

Note that for any s > 1, the function φ(x) = |x|s is convex. Let s := (r/p)
and apply Jensen’s inequality (Theorem 2.28) to deduce that when µ is a
probability measure,

‖f‖r
p = φ

(∫
|f |p dµ

)
≤
∫
φ (|f |p) dµ = ‖f‖r

r, (2.29)
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which is the desired result. If µ(Ω) > 0 is finite but not equal to 1, define
µ̄(A) := µ(A)/µ(Ω). This is a probability measure, and according to what
we have shown thus far,(∫

|f |p dµ̄
) 1

p

≤
(∫

|f |r dµ̄
) 1

r

. (2.30)

Solve for µ-integrals to finish. Finally, if µ(Ω) = 0, then the result holds
trivially. �

Fix any p ≥ 1, and for all f, g ∈ Lp(µ), define d(f, g) := ‖f − g‖p.
According to Minkowski’s inequality (Theorem 2.25), d has the properties:
(a) d(f, f) = 0; (b) d(f, g) ≤ d(f, h) + d(h, g); and (c) d(f, g) = d(g, f). In
other words, if it were the case that “d(f, g) = 0 =⇒ f = g,” then d(·, ·)
would metrize Lp(µ). However, this latter property generally does not hold,
since we could let g = f1A, where A 6= ? and µ(A{) = 0, to see that g 6= f

but d(f, g) =
{∫

A{ |f |p dµ
}1/p

= 0 (why?). Nonetheless, if we can identify
the elements of Lp(µ) that are equal to each other outside a null set, then the
resulting collection of equivalence classes (endowed with the usual quotient
topology and Borel σ-algebra) is indeed a metric space. It is also complete
(i.e., every Cauchy sequence converges).

Theorem 2.31 Let (Ω,F, µ) denote a σ-finite measure space. For any f, g ∈
Lp(µ), write f ∼ g if and only if f = g, µ-almost everywhere (i.e., µ({ω :
f(ω) 6= g(ω)}) = 0).) Then ∼ is an equivalence relation on Lp(µ). Let [f ]
denote the ∼-orbit of f ; i.e., f ∈ [f ] if and only if f ∼ g. Let  Lp(µ) := {[f ] :
f ∈ Lp(µ)} and define ‖[f ]‖p := ‖f‖p. Then,  Lp(µ) is a complete normed
linear space. Moreover,  L2(µ) is a complete Hilbert space.

Henceforth, we will not distinguish between Lp(µ) and  Lp(µ). This
should not cause any confusions. Also note that  Lp(µ) is the quotient space
Lp(µ)/ ∼.

Proof The fact that Lp(µ)—and hence  Lp(µ)—is a linear space has already
been established; cf. Theorem 2.25. As we argued a few paragraphs earlier,
d(f, g) := ‖f − g‖p is a norm (now on  Lp(µ)) if we know that d(f, g) = 0 ⇒
[f ] = [g]; but this is obvious. To prove completeness, suppose (fn) is a Cauchy
sequence in Lp(µ). It suffices to show that fn converges in Lp(µ). (Translate
this to a statement about [fn]’s). Recall that “(fn) is Cauchy” means that
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‖fn − fm‖p → 0 as n,m → ∞. Thus, we can find a subsequence n1, n2, . . .
such that ‖fnk+1

− fnk
‖p ≤ 2−k. In particular,

∑
k ‖fnk+1

− fnk
‖p < +∞.

Thanks to Minkowski’s inequality and the monotone convergence theorem
(to get Minkowski’s inequality to work for an infinite sum),∥∥∥∥∥

∞∑
k=1

∣∣fnk+1
− fnk

∣∣∥∥∥∥∥
p

< +∞. (2.31)

(Remember that integrals of nonnegative functions are always defined, but
could be infinite; this is true even if the function is in places infinite.) In
particular,

∑
k(fnk+1

− fnk
) converges µ-almost everywhere (i.e., for all but

a null set of ω ∈ Ω.) Let f denote this sum. By Fatou’s lemma, f ∈ Lp(µ),
and by the triangle inequality for Lp-norms (i.e., by Minkowski’s inequality),
‖f − fnk

‖p ≤
∑∞

j=k+1 ‖fnj+1
− fnj

‖p → 0 as k → ∞. Using Minkowski’s
inequality once more, we see that for any N, k ≥ 1, ‖f−fN‖p ≤ ‖f−fnk

‖p +
‖fnk

− fN‖p. Let N → ∞ and k → ∞ in this order to see that fn → f in
Lp(µ). To finish this proof, we need to show that L2(µ) has an inner-product,
but this is 〈f, g〉 :=

∫
fg dµ, which thanks to Hölder’s inequality, is finite for

all f, g ∈ L2(µ). �

7 Exercises

Exercise 2.1 Given any p1, . . . , pn > 0 such that
∑n

ν=1 pν = 1, and
x1, . . . , xn > 0, prove that

∏n
ν=1 x

pν
ν ≤ ∑n

ν=1 pνxν . Prove also that this is
a strict inequality unless x1 = · · · = xn.
(Hint: Use Jensen’s inequality, Theorem 2.28, using the convexity of the
exponential function.)

Exercise 2.2 Let φ(a) := |a| ÷ {1 + |a|}, and given any two random vari-
ables X and Y , define d

P
(X, Y ) := E{φ(X − Y )}. Prove that d

P
metrizes

convergence in probability.

Exercise 2.3 Suppose (Xn) and (Yn) are two sequences of random variables

such that Xn
P→ X and Yn

P→ Y . Show that whenever f is a continuous

function of two variables, then f(Xn, Yn)
P→ f(X, Y ). This is called Slutsky’s

Lemma.
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Exercise 2.4 Suppose X1, X2, . . . are random variables that converge in
probability to a random variable X. Prove that for any subsequence (nk),
there exists a further sub-subsequence (nkj

) such that as j →∞, Xnkj
→ X

almost surely.

Exercise 2.5 Prove Chernoff’s inequality : For any nonnegative random
variable X and all λ > 0,

P {X ≥ λ} ≤ inf
ξ≥0

exp
{−λξ + ln E

[
eξX
]}
. (2.32)

(Hint: Apply Markov’s inequality, Theorem 2.15, to eξX .)

Exercise 2.6 Suppose Ω = [0, 1]d, F = B(Ω), and µ is the Lebesgue measure
on (Ω,F). Prove that continuous functions are dense in Lp(µ) for every p ≥ 1.
That is, prove that given ε > 0 and f ∈ Lp(µ), we can find a continuous
function g : [0, 1]d → R such that ‖f − g‖p ≤ ε.

Exercise 2.7 Prove the generalized Hölder inequality: Given n random vari-
ables X1, . . . , Xn and p1, . . . , pn > 1 that satisfy

∑n
`=1 p

−1
` = 1,

E

{∣∣∣∣∣
n∏

`=1

X`

∣∣∣∣∣
}
≤

n∏
`=1

‖X`‖p`
. (2.33)

(Hint: You can use Exercise 2.1 for instance.)
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Chapter 3

Product Spaces

1 Introduction

The product space A1 × A2 is the collection of all two-tuples (a1, a2) where
a1 ∈ A1 and a2 ∈ A2. In like manner, one defines A1 × A2 × A3, etc. In this
way, we can even define infinite-product spaces of the type A1 × A2 × · · · .

We have two main reasons for studying the measure theory of product
spaces. The obvious one is that an understanding of product spaces allows
for the construction and analysis of several random variables simultaneously;
a theme that is essential to nearly all of probability theory.

Our second reason for learning more about product spaces is less obvious
at this point: We will need the so-called Fubini–Tonelli theorem that allows
to interchange the order of various multiple-integrals. This is a central fact,
and leads to a number of essential computations in mathematics.

2 Finite Products

Given two finite measure spaces (Ω1,F1, µ1) and (Ω2,F2, µ2), we can define
the product space Ω1 × Ω2 := {(ω1, ω2) : ω1 ∈ Ω1, ω2 ∈ Ω2} .

Consider the collection A0 := {A1 × A2 : A1 ∈ F1, A2 ∈ F2}. This
is closed under finite (in fact arbitrary) intersections, but not under finite
unions. For example, let A1 = A2 = [0, 1] and B1 = B2 = [1, 2] to see that
(A1 × A2) ∪ (B1 ×B2) is not of the form C1 × C2 for any C1 and C2. So A0

is not an algebra. We correct this by adding to A0 all finite disjoint unions
of elements of A0, and call the resulting collection A.
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Lemma 3.1 A is an algebra, and F1 × F2 := σ(A0) = σ(A).

Define µ on A0 as follows:

µ(A1 × A2) := µ1(A1)µ2(A2), ∀A1 ∈ F1, A2 ∈ F2. (3.1)

If A1, . . . , An ∈ A0 are disjoint, we define µ(∪n
i=1A

i) :=
∑n

i=1 µ(Ai). This
defines µ on the algebra A. This is well defined. Indeed, suppose ∪n

i=1A
i =

∪m
j=1B

j where the Ai’s are disjoint and the Bj’s are also disjoint. Then,
∪n

i=1A
i = ∪n

i=1 ∪n
j=1 (Ai ∩ Bj) is a disjoint union of nm sets, so µ(∪n

i=1A
i) =∑n

i=1

∑m
j=1 µ(Ai ∩ Bj) = µ(∪m

j=1B
j) by symmetry.

Theorem 3.2 There exists a unique measure µ1 × µ2 on (Ω1 ×Ω2,F1 × F2)
such that on A, µ1 × µ2 = µ.

Definition 3.3 The measure µ1 × µ2 is called the product measure of µ1

and µ2; the space Ω1 ×Ω2 is the corresponding product space, and F1 ×F2 is
the product σ-algebra. The measure space (Ω1 × Ω2,F1 × F1, µ1 × µ2) is the
product measure space.

Remark 3.4 By induction, we can construct a product measure space
(
∏n

i=1 Ωi,
∏n

i=1 Fi,
∏n

i=1 µi) based on any finite number of measure spaces
(Ωi,Fi, µi), i = 1, . . . , n.

Proof of Theorem 3.2 Thanks to Carathéodory’s extension theorem (The-
orem 1.15), it suffices to show that (µ1 × µ2) is countably additive on the
algebra A. This is done in three successive steps.

Step 1. Sections of Measurable Sets are Measurable.
Given any E ⊆ Ω1 × Ω2 and for all ω2 ∈ Ω2, define

Eω2 := {ω1 ∈ Ω1 : (ω1, ω2) ∈ E} . (3.2)

This is the section of E along ω2. In the first step of the proof we show that
if E is measurable (i.e., if E ∈ F1 × F2), then for any fixed ω2 ∈ Ω2, Eω2

is measurable too (i.e., Eω2 ∈ F1): Fix ω2 ∈ Ω2 and consider the collection
M := {E ∈ F1 × F2 : Eω2 ∈ F1}. This is a monotone class that contains
A. By the monotone class theorem (Theorem 1.27), M = F1 × F2, which
concludes Step 1.

Step 2. Disintegration.
Since Eω2 is measurable, µ1(Eω2) is well defined. We now show that as a
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function in ω2 ∈ Ω2, ω2 7→ µ1(Eω2) is measurable. First suppose E ∈ A0 so
that E = A1 × A2 where Ai ∈ Fi. Then Eω2 = A1 if ω2 ∈ A2, and Eω2 = ?
if ω2 ∈ A{

2. As a result, µ1(Eω2) = µ1(A1)1A2(ω2), which is a measurable
function of ω2 ∈ Ω2. Furthermore, (µ1 × µ2)(E) = µ1(A1)µ2(A2), so that

(µ1 × µ2)(E) =

∫
µ1(Eω2)µ2(dω2). (3.3)

Equation (3.3) is called a disintegration formula.

Step 3. Countable Addititivity.
By finite additivity, (3.3) extends to a definition of µ1 × µ2 on finite disjoint
unions of elements of A0; i.e., the above holds for all E ∈ A. Furthermore, the
dominated convergence theorem shows that µ1×µ2 is countably additive on
the algebra A.3.1 Therefore, owing to the Carathéodory extension theorem
(Theorem 1.15), µ1 × µ2 can be extended uniquely to a measure on all of
F1 × F2. This proves the theorem. In addition, it shows that (3.3) holds
for all E ∈ F1 × F2. (The fact that ω2 7→ µ1(Eω2) is measurable is proved
implicitly here; why?). �

The following shows that the two possible ways of constructing Lebesgue’s
measure coincide.

Corollary 3.5 If md designates the Lebesgue measure on the measure space
((0, 1]d,B((0, 1]d)), then md = m1 × · · · ×m1 (d times.)

Proof If E = (a1, b1] × · · · × (ad, bd] is a d-dimensional hypercube, then
md(E) =

∏d
j=1(bj − aj) = (m1 × · · · ×m1)(E). By finite additivity, md and

(m1× · · ·×m1) agree on the smallest algebra that contains hypercubes, and
by Carathéodory’s extension theorem, md and (m1 × · · · ×m1) agree on the
σ-algebra generated by hypercubes. �

An important consequence of our development thus far is the following.

Theorem 3.6 (The Fubini–Tonelli Theorem) If f : Ω1 × Ω2 → R is
product measurable, then for each ω1 ∈ Ω1, ω2 7→ f(ω1, ω2) is F2-measurable,
and by symmetry, for each ω2 ∈ Ω2, ω1 7→ f(ω1, ω2) is F1-measurable. If

3.1To prove this, it is enough to show that if EN ∈ A satisfy EN ↓ ?, then µ1×µ2(EN ) ↓
0. But this follows from (3.3) and the monotone convergence theorem (Theorem 1.27).
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in addition f ∈ L1(µ1 × µ2), then the following are a.e.-finite measurable
functions:

ω1 7→
∫
f(ω1, ω2)µ2(dω2), ω2 7→

∫
f(ω1, ω2)µ1(dω1). (3.4)

Finally, the following change-of-variables formula is valid:∫
f d(µ1 × µ2) =

∫ (∫
f(ω1, ω2)µ1(dω1)

)
µ2(dω2)

=

∫ (∫
f(ω1, ω2)µ2(dω2)

)
µ1(dω1).

(3.5)

Proof (Sketch) If f = 1E for some E ∈ F1 × F2, then our disintegration
formula (3.3) contains (3.4) and (3.5). In other words, these two equations
hold for all elementary functions f . By linearity, they also hold for simple
functions. Finally, we take limits to prove the result for every function f ∈
L1(µ1 × µ2). �

The following is an important corollary of the proof of Fubini–Tonelli’s
theorem. (To prove it, approximate f from below by simple functions and
use the monotone convergence theorem.)

Corollary 3.7 If f : Ω1 × Ω2 → R is measurable and nonnegative, then
(3.5) holds in the sense that all three double-integrals converge and diverge
together and are equal in the convergent case.

Remark 3.8 Careful examination of the content of the above proof shows us
a little more. Namely, that whenever any of the three integrals in (3.5) are
finite when f is replaced by |f |, then all three are finite where f is replaced
by |f |, and in this case (3.5) holds.

Corollary 3.9 The Fubini–Tonelli theorem continues to hold if µ1 and µ2

are σ-finite.
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Proof We can assume without loss of generality that f ≥ 0 (else consider
f+ and f− separately), and find measurable Kn ↑ Ω1 × Ω2 such that (µ1 ×
µ2)(Kn) < +∞. What we have shown thus far implies that everything
is fine on Kn. Then take limits using the monotone convergence theorem
(Theorem 2.21). �

Fubini-Tonelli’s theorem is a deceptively delicate result as the following
two examples show.

Example 3.10 Let (Ω,F,P) denote the Borel–Steinhaus probability space;
i.e., Ω := (0, 1], F := B(Ω), and P := the Lebesgue on Ω. For every integer
n ≥ 0, define ψn to be the unique piecewise-linear continuous function that is
(i) nonnegative everywhere, and 0 outside (2−n−1, 2−n); (ii) symmetric about
the middle point of (2−n−1, 2−n); and (iii) has total area 1. That is,

ψn(x) :=


22n+4x− 2n+3, if 2−n−1 ≤ x < 3 · 2−n−2,

−22n+4x+ 2n+4, if 3 · 2−n−2 ≤ x < 2−n,

0, otherwise.

(3.6)

Now define the measurable function f on Ω× Ω as follows:

f(x, y) :=

∞∑
n=0

[
ψn(x)− ψn+1(x)

]
ψn(y), ∀x, y ∈ Ω. (3.7)

All but one of these terms are zero, so the function f is perfectly well-defined.
Moreover,

∫ 1

0

∫ 1

0
f(x, y) dx dy = 0 6= 1 =

∫ 1

0

∫ 1

0
f(x, y) dy dx. Thus, Fubini–

Tonelli’s theorem fails, and the reason is that
∫ |f | d(P × P) = +∞ in this

case. (Prove it!)

Example 3.11[Sierpinski [Sie20]] In this example we show that Fubini–
Tonelli’s theorem need not hold when f is not product-measurable. To do so,
we will rely on the axiom of choice, as well as the continuum hypothesis.3.2

Throughout, (Ω,F,P) denotes the Borel–Steinhaus probability space.

3.2While assuming the continuum hypothesis may make some readers uncomfortable,
assuming the axiom of choice should not. For example, I remind you that without the
axiom of choice one could not even prove the following theorem of G. Cantor: “A countable
union of countable sets is countable.” In other words, the axiom of choice is well-lodged
in the theories of measure and probability alike. On the other hand, it is likely that a
suitable “axiom of non-choice” would be enough to develop a theory of probability that is
as useful as the existing theory, and yet avoids the nuances of measure theory altogether.
In this connection, see the landmark paper of Solovay [Sol70].
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First we define S to be the collection of all ordinal numbers less than or
equal to c := the first uncountable ordinal. (In logic this is called Hartog’s
c-section of the ordinal numbers. Note that the existence of c implicitly relies
on the axiom of choice.)

Since S has the power of the continuum, according to the continuum
hypothesis, we can find a one-to-one map φ : [0, 1] → S. Now consider the
set E := {(x, y) ∈ [0, 1]2 : φ(x) < φ(y)}. For any x ∈ [0, 1], consider the
x-section of E defined as Ex := {y ∈ [0, 1] : (x, y) ∈ E} = {y ∈ [0, 1] :
φ(x) < φ(y)}. Since φ is one-to-one, E and Ex are nonempty, and moreover
E{

x is denumerable. Consequently, Ex is Borel measurable, and P(Ex) = 1
for all x ∈ [0, 1]. On the other hand, we can also define the y-section,

yE := {x ∈ [0, 1] : (x, y) ∈ E}, for any y ∈ [0, 1] and note that yE is
denumerable, so that yE ∈ F and P(yE) = 0. In particular,∫ 1

0

P(Ex) P(dx) = 1 6= 0 =

∫ 1

0

P(yE) P(dy). (3.8)

That is, there is no disintegration formula (3.3), which means that Fubini–
Tonelli’s theorem (cf. equation 3.5) does not hold for the bounded function
f(x, y) = 1E(x, y). But P is a probability measure on the Borel subsets
of [0, 1]. Therefore, all bounded measurable functions are P-integrable, and
we see that the source of the difficulty is that f is not product-measurable
although x 7→ ∫

f(x, y) P(dy) and y 7→ ∫
f(x, y) P(dx) are measurable (in

fact constants).

Remark 3.12 Mattner [Mat99, §2.2] has constructed a Borel set A ⊂ R and
two σ-finite measures µ1 and µ2 on Borel subsets of Ω := R such that if we
ignore measurability issues, then we would have the following:∫ ∞

−∞

(∫ ∞

−∞
1A(x+ y)µ1(dx)

)
µ2(dy)

6=
∫ ∞

−∞

(∫ ∞

−∞
1A(x+ y)µ2(dy)

)
µ1(dx).

(3.9)

This is interesting since (i) it does not rely on the axiom of choice (nor
on the continuum hypothesis); and (ii) shows that the “convolution” y 7→∫
f(x − y)µ1(dx) need not be measurable with respect to the smallest σ-

algebra with respect to which all functions {x 7→ f(x − y); y ∈ R} are
measurable.



Section 3. Infinite Products 41

3 Infinite Products

So far, the Lebesgue measure on (Rn ,B(Rn)) is essentially our only non-
trivial example of a measure. We have also seen that once we have a few
nice measures, we can create other interesting product measures, but for the
Lebesgue measure, this procedure does not produce anything new since finite
products of the Lebesgue measure only yield the Lebesgue measure on the
higher-dimensional product space.

We now wish to add to our repertoire of nontrivial measures by defining
measures on infinite-product spaces that we take to be (0, 1]∞ or R∞ , where
for any Ω the set Ω∞ is defined as the collection of all infinite sequences of
the form (ω1, ω2, . . .) where ωi ∈ Ω.

Warning: In case you have not seen infinite-product measures
before, read this section with care. The notation can be a bit
taxing, but this is important material that you will need to know.

In order to construct measures on (0, 1]∞, or more generally R∞ , we first
need a topology in order to have a Borel σ-algebra B((0, 1]∞). For this, we
need to borrow a bit from general topology.

Definition 3.13 Given a topological set Ω, a set A ⊆ Ω∞ is called a cylinder
set, if it has the form A = A1 × A2 × · · · where for all but a finite number
of i’s, Ai = Ω. A cylinder set A = A1 × A2 × · · · is open if every Ai is open
in Ω. The product topology on Ω∞ is the smallest topology that contains all
open cylinder sets. This, in turn, gives us the Borel σ-algebra B(Ω∞).

Suppose we wanted to construct the Lebesgue measure on (0, 1]∞. Note
that any cylinder set has a perfectly well-defined Lebesgue measure in the
following sense: Let I` = (0, `−1] for ` = 1, 2, 3, and I` = (0, 1] for ` ≥ 4.
Then, I = I1 × I2 × I3 × I4 × · · · is a cylinder set, and no one would deny
that the “Lebesgue measure” of I should be 1 × 1

2
× 1

3
= 1

6
, since this is

the 3-dimensional Lebesgue measure of the 3-dimensional set I1 × I2× I3. It
stands to reason that if m denotes the one-dimensional Lebesgue measure,
one should be able to define the Lebesgue measure m∞ := m × m × · · ·
on ((0, 1]∞,B((0, 1]∞)) as the (or perhaps a) “projective limit” of the n-
dimensional Lebesgue measure mn := m × · · · × m on ((0, 1]n,B((0, 1]n)).
In fact, we will make this argument rigorous not only for m∞, but for a
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large class of other measures as well. To do this, we need some notation for
projections.

For all 1 ≤ n ≤ ∞, let In := (0, 1]n, and Bn := B(In). If A = A1 ×
A2× · · · is a subset of I∞, then for any integer n ≥ 1 we can project A onto
its first n coordinates as follows: πn(A) := A1 × · · · × An. We will use this
notation throughout.

Definition 3.14 We say that a set A = A1×A2×· · · ∈ I∞ is a cylinder set
if either A = ? or else there exists n ≥ 1 such that for all i > n, Ai = (0, 1].
We define the dimension of a nonempty set A as

dim(A) := inf {n ≥ 1 : ∀i > n, Ai = (0, 1]} , (3.10)

where inf ? := +∞, and define dim(?) := 0.

Note that dim(?) = 0 and dim(I∞) = +∞. Moreover, A ∈ I∞ is a
nonempty cylinder set if and only if all but a finite number of its coordi-
nates are equal to (0, 1], and all cylinder sets are finite-dimensional. In case
dim(A) = n, then An 6= (0, 1], but Ai+n = (0, 1] for all i ≥ 1, and you should
think of A ∈ I∞ as the natural embedding (or lifting) of the n-dimensional
(in the Euclidean sense) set πn(A) = A1 × · · · × An ∈ In on to I∞.

Definition 3.15 A family {(In,B(In),Pn); n = 1, 2, . . .} of probability
spaces is consistent if for all n ≥ 1 and all A1, . . . , An ∈ B(I), Pn(A1 ×
· · · × An) = Pn+1(A1 × · · ·An × (0, 1]). We will also say that (Pn) is consis-
tent.

Remark 3.16 Here is an alternative way to think of a consistent family
(Pn): Suppose n := dim(A) is a finite and (strictly) positive integer. Then,
for all m ≥ n, Pm(πm(A)) = Pn(πn(A)).

The notation is admittedly heavy-handed, but once you understand it,
you are ready for the beautiful theorem of A. N. Kolmogorov whose proof is
written out later on in §4.

Theorem 3.17 (The Kolmogorov Extension Theorem) Suppose (Pn)
is a consistent family of probability measures on each of the spaces (In,Bn).
Then, there exists a unique probability measure P∞ on (I∞,B∞) such that
for any finite n, and all n-dimensional sets B ∈ B∞, P∞(B) = Pn(πn(B)).
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The only hard part of the proof is in proving countable additivity, and
this is similar to the analogous proof for the Lebesgue measure.

Remark 3.18 One can use Theorem 3.17 to construct the Lebesgue measure
on ((0, 1]∞,B((0, 1]∞)).

Remark 3.19 One can just as easily prove Theorem 3.17 on the measure
space (R∞ ,B(R∞)), where R∞ is endowed with the product topology.

4 Proof of Kolmogorov’s Extension Theorem

(Optional)

Here is the strategy of the proof in a nutshell: Let A denote the collection of
all finite unions of cylinder sets of the form (a1, b1]× (a2, b2]×· · ·× (ak, bk]×
(0, 1]× (0, 1]× · · · where 0 ≤ ai < bi ≤ 1 for all i, and k ≥ 1. We also add ?
and I∞ to A and, in this way, it follows from the definition of the product
topology that A is an algebra that generates B∞. Our goal is to construct a
countably additive measure on A and then appeal to Carathéodory’s theorem
(Theorem 1.15) to finish.

Our definition of P∞ is both simple and intuitively appealing: First, define
P∞(?) = 0 and P∞(I∞) := 1. This takes care of the 0-dimensional element
(?) as well as the infinite-dimensional element (I∞) of A. Now, suppose
A ∈ A is such that n = dim(A) < +∞. Then we let P∞(A) := Pn(πn(A)).
This is well defined (i.e., does not depend on any given representation of A)
since Pn is a measure on (In,Bn); you should check the details.

Step 1. Finite Additivity.
Let us first check that P∞ is finitely additive on A. We want to show that
if A,B ∈ A are disjoint, then P∞(A ∪ B) = P∞(A) + P∞(B). If A = ? or
I∞, then B = A{, and finite additivity holds trivially from the fact that by
definition, P∞(?) = 1− P∞(I∞) = 0.

If neither A nor B is (0, 1]∞, then n := dim(A) and m := dim(B) are non-
trivial numerals. Without loss of generality, we may suppose that n ≥ m, in
which case P∞(A∪B) = Pn(πn(A)∪πn(B)) = Pn(πn(A))+Pn(πn(B)), since
πn(A) ∩ πn(B) = ? and Pn is a measure. On the other hand, Pn(πn(A)) =
P∞(A), and since (Pk) is a consistent family, Pn(πn(B)) = Pm(πm(B)) (cf.
Remark 3.16). The latter equals P∞(B), and we have verified finite additiv-
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ity.
Step 2. Countable Additivity.

Thanks to Carathéodory’s extension theorem (Theorem 1.15), P∞ can be
uniquely extended from a countably additive measure on A to a countably
additive measure on σ(A) = B∞, and this extension (still written as P∞) is
the probability measure on (I∞,B∞) that is stated in the theorem. Thus,
it suffices to establish the countable additivity of P∞ on A. This uses a
similar argument as the one used to show that the Lebesgue measure on
(0, 1] is countably additive on finite unions of intervals of the form (a, b]; make
certain that you understand the proof of Lemma 1.14 before proceeding with
the present proof.

Let A1, A2, . . . denote disjoint sets in A such that ∪∞j=1A
j is also in A;

we need to verify that P∞(∪∞j=1A
j) =

∑∞
j=1 P∞(Aj). On the other hand,

∪∞j=1A
j = (∪N

j=1A
j)∪(∪∞j=NA

j), and ∪N
j=1A

j and ∪∞j=NA
j are disjoint elements

of A. By Step 1, P∞ (∪∞j=NA
j
)

=
∑N

j=1 P∞(Aj) + P∞ (∪∞j=NA
j
)
. Thus, it

suffice to show that whenever BN ↓ ?—all in A—then P∞(BN) ↓ 0. We
suppose to the contrary and derive a contradiction. That is, we suppose that
there exists ε > 0 such that for all n ≥ 1, P∞(Bn) ≥ ε. These remarks
make it clear that dim(Bn) is strictly positive (i.e., Bn 6= ?) and finite (i.e.,
Bn 6= I∞). Henceforth, let γ(n) := dim(Bn), and note that the condition
Bn ↓ ? forces γ(n) ↑ +∞. Thus,

Bn = Bn
1 × · · · × Bn

γ(n) × (0, 1]× (0, 1]× · · · , (3.11)

where Bn
m := ∪k(n,m)

j=1 (an,m
j , bn,m

j ] (m ≤ γ(n)). Now define Cn to be an ap-
proximation from inside to B via closed intervals, viz.,

Cn := Cn
1 × · · ·Cn

γ(n) × (0, 1]× (0, 1]× · · · , (3.12)

where Cn
m = ∪k(n,m)

i=1 [αn,m
i , bn,m

i ] (m ≤ γ(n)), and the αn,m
i ∈ (an,m

i , bn,m
i ) are

so close to the a’s that

P∞(Bj \ Cj) ≤ ε2−j, ∀j ≥ 1. (3.13)

Proof. This can be always be done because P∞(Bj \ Cj) is

Pγ(j)

k(j,1)⋃
i=1

[
aj,1

i , αj,1
i

]× · · · ×
k(j,γ(j))⋃

i=1

[
a

j,γ(j)
i , α

j,γ(j)
i

] ,

and Pγ(j) is a measure on (Iγ(j),Bγ(j)). �
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Therefore, thanks to (3.13), P∞(Dn) ≥ (ε/2), where Dn := ∩n
j=1C

j is a

sequence of decreasing sets with Dn ⊆ [0, 1]γ(n) × (0, 1] × (0, 1] × · · · . Now
we argue that ∩∞n=1D

n 6= ?; since Dn ⊆ Bn, this contradicts Bn ↓ ? and we
would be finished.

We know that Dn 6= ? for any finite n since P∞(Dn) ≥ (ε/2). Moreover,
we can write Dn := Dn

1 ×Dn
2 × · · · , where (a) for all j > γ(n), Dn

j = (0, 1];
and (b) for all j ≤ γ(n), Dn

j is closed in [0, 1]. So we can choose for each
n ≥ 1, a point xn ∈ Dn of the following form:

xn :=

(
xn

1 , x
n
2 , . . . x

n
γ(n),

1

2
,
1

2
, · · ·

)
, ∀n ≥ 1. (3.14)

Since γ(n) ↑ +∞, and since D1
1 ⊇ D2

1 ⊇ D3
1 ⊇ · · · is a decreasing sequence

of closed subsets of [0, 1], z1 := lim`→∞ x`
1 ∈ ∩∞n=1D

n
1 . Similarly, for any

j ≥ 1, zj := lim`→∞ x`
j ∈ ∩∞n=1D

n
j . In particular, we have found a point

z := (z1, z2, z3 . . .) in ∩∞n=1D
n. So ∩∞n=1D

n 6= ?, which is a contradiction.

5 Exercises

Exercise 3.1 Given an uncountable set Ω, let F denote the collection of all
subsets A ⊆ Ω such that either A or A{ is denumerable.

1. Prove that F is a σ-algebra.

2. Define the set function P : F → {0, 1} by: P(A) := 1 if A is uncount-
able, and P(A) := 0 if A is denumerable. Prove that P is a probability
measure on (Ω,F).

3. Use only the axiom of choice to construct a set Ω, and an E ⊆ Ω× Ω
such that for all x, y ∈ Ω, Ex and (yE){ are denumerable, where Ex :=
{y ∈ Ω : (x, y) ∈ E} and yE := {x ∈ Ω : (x, y) ∈ E}.

Exercise 3.2 If µ1, µ2, . . . are probability measures on ([0, 1],B([0, 1])),
carefully make sense of the probability measure

∏∞
`=1 µ`. Use this to con-

struct the Lebesgue measurem on [0, 1]∞ endowed with its product σ-algebra.
Finally, if 1 > a1 > a2 > · · ·an ↓ 0, then prove that

m

( ∞∏
`=1

[a`, 1]

)
> 0 if and only if

∞∑
`=1

a` < +∞. (3.15)
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We will do much more on this subject when we see the Borel–Cantelli lemma
later on in Theorem 5.23.

Exercise 3.3 Consider a set-valued function X on our probability space
(Ω,F,P). Specifically, X : Ω → P(Rd), where P(Rd) denotes the power
set of Rd . We say that X is a random set if (ω, x) 7→ 1X(ω)(x) is product
measurable on a σ-finite measure space (Ω× Rd ,F×B(Rd), ν) where ν is a
given measure. Prove:

1. If A ∈ B(Rd), then A and X ∩ A are both random sets.

2. If X,X1,X2, . . . are random sets, then so are X{, ∩∞n=1Xn, and ∪∞n=1Xn.

3. If A ∈ B(Rd) satisfies λ(A) < +∞ where λ is a σ-finite measure on
(Rd ,B(Rd)), then λ(X ∩ A) is a finite random variable.

4. Prove that for any A ∈ B(Rd) such that λ(A) < +∞, and all integers
k ≥ 1,

‖λ(X ∩ A)‖k
k =

∫
A

· · ·
∫

A

P {x1 ∈ X, . . . , xk ∈ X} λ(dx1) · · ·λ(dxk),

(3.16)
where ‖ · · · ‖k denotes the Lk(P)-norm.

5. Show that P{x ∈ X} = 0 for λ-almost every x ∈ Rd if and only if
λ(X) = 0, P-a.s.

6. There exists a nonempty random set X such that for all x ∈ Rd , P{x ∈
X} = 0.
(Hint: If X is a random variable, then first prove that X(ω) := {X(ω)}
defines a random set.)



Chapter 4

The Radon–Nikodým Theorem

1 Introduction

Given two measures µ and ν, one can ask, “When can we find a function π?

such that for all measurable sets A, ν(A) =
∫

A
π? dµ?”. If µ is the Lebesgue

measure, then the function π? is a probability density function, and the
prescription ν(A) =

∫
A
π? dµ defines a probability measure ν. A famous

example of this is the (standard) normal (or Gaussian) distribution. This is
precisely the measure ν when π?(x) := (2π)−1/2 exp

(−1
2
x2
)
. Later on when

studying conditional expectations, we will see a substantially more important
consequence of the Radon–Nikodým theorem. However, this discussion will
have to wait.

2 The Radon–Nikodým Theorem

Definition 4.1 Given two measures µ and ν on (Ω,F), we say that ν is
absolutely continuous with respect to µ (written ν << µ) if for any A ∈ F
such that µ(A) = 0, then also ν(A) = 0.

For instance, suppose that (Ω,F, µ) is a finite measure space and f ∈
L1(µ). Let ν(A) :=

∫
A
f dµ and note that ν is a finite measure that is also

absolutely continuous with respect to µ. The following states that what we
have just seen is the only example of its kind.

Theorem 4.2 (The Radon–Nikodým Theorem) If ν << µ are two fi-
nite measures on (Ω,F), then there exists a nonnegative π? ∈ L1(µ), such
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that for all bounded measurable functions f : Ω → R,∫
f dν =

∫
fπ? dµ. (4.1)

Furthermore, this π? is unique up to a µ-null set.

Remark 4.3 The function π is often written as dν/dµ and is referred to as
the Radon–Nikodým derivative of ν with respect to µ.

Remark 4.4 Here is a natural way to think of Radon–Nikodým derivatives:
Suppose µ is a measure on a measure space (Ω,F), and suppose f ∈ L1(µ)
is nonnegative. Consider the abstract integral:

ν(E) :=

∫
E

f dµ, ∀E ∈ F. (4.2)

Then, ν is a measure also, and dν
dµ

= f , µ-a.e. Furthermore, if ‖f‖1 = 1, then
ν is a probability measure, and f is its probability density function. See
Examples 1.17–1.20 for some examples of Radon–Nikodým derivatives that
arise in probability theory.

This is a simple but deep theorem. Here is a “geometric proof,” due to
J. von Neumann.

Proof (von Neumann [vN40, Lemma 3.2.3, p. 127]) First, we suppose
that ν is dominated by µ (written ν ≤ µ); i.e., that for all A ∈ F, ν(A) ≤
µ(A). If so, then we clearly have ν << µ, but domination of measures is
a much stronger requirement than their absolute continuity. Nevertheless,
once we understand the Radon–Nikodým theorem in the dominated case,
the general result will follow easily.

Step 1. The Case ν ≤ µ.
Consider the linear functional L(f) :=

∫
f dν that acts on all f ∈ L1(ν). By

Jensen’s inequality, |L(f)|2 ≤ ν(Ω) · ∫ |f |2 dµ. Consequently, L is a bounded
linear functional on L2(µ). Since the latter is complete (Theorem 2.31),
the general theory of Hilbert spaces tells us that L is obtained by an inner
product; i.e., there exists a µ-almost everywhere unique π ∈ L2(µ) such that
for all f ∈ L2(µ), L(f) is the L2(µ)-inner product between f and π; cf.
Theorem A.4 below. In other words, there exists some π ∈ L2(µ), such that∫

f dν =

∫
fπ dµ, ∀f ∈ L2(µ). (4.3)
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If we replace f by the indicator of the measurable set {π ≤ −α} for α > 0, we
see that µ{π ≤ −α} = 0, for otherwise ν{π ≤ −α} would be < 0. From the
right-continuity of µ, it follows that π ≥ 0, µ-almost everywhere. That is, we
have derived the theorem for all f ∈ L2(µ). By the monotone convergence
theorem, this fact holds for all measurable f ≥ 0, and the entire theorem
follows for dominated measures (with π? := π).

Step 2. General ν, µ.
Given any two finite measures ν and µ on (Ω,F), it is obvious that ν ≤ (µ+ν).
Therefore, Step 1 extracts a µ-a.e. unique and nonnegative π ∈ L2(µ + ν)
such that for all f ∈ L2(µ + ν),

∫
f(1− π) dν =

∫
fπ dµ. Replace f by the

indicator of {x : π(x) ≥ 1} to deduce that µ{π ≥ 1} = 0. Consequently,
for all f ∈ L2(µ+ ν),

∫
{π<1} f(1− π) dν =

∫
{π<1} fπ dµ. Moreover, thanks to

the monotone convergence theorem, this holds for any measurable f ≥ 0. So
we can replace f by f(1− π)−11{π<1} to see that there exists a measurable
function Π := π(1− π)−11{π<1} ≥ 0, such that for any measurable f ≥ 0,∫

{π<1}
f dν =

∫
fΠ dµ. (4.4)

In general, one cannot go further and remove the {π < 1} from the integral.
However, if ν << µ, the already-proven fact that µ{π ≥ 1} is 0 shows that
the left-hand side holds with or without {π < 1}, i.e.,∫

f dν =

∫
fΠ dµ. (4.5)

Once we show that Π ∈ L1(µ), the theorem follows with π? := Π, but this is
easy since we can plug in f(x) ≡ 1 in the above. �
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Part II

Foundations





Chapter 5

Independence

1 Introduction

Our review/development of measure theory is finally complete, and we begin
studying probability theory in earnest. In this chapter we introduce the all-
important notion of independence, and use it to prove a precise formulation of
the so-called law of large numbers. In rough terms, the latter states that the
sample-average of a large random sample is close to the population average.
As such, the law of large numbers opens the door to developing statistical
means by which one can estimate various parameters of interest. We will also
see more subtle and yet equally fundamental applications of independence
that are routinely used in other scientific disciplines.

Throughout, let (Ω,F,P) denote a probability space.

2 Random Variables and Distributions

Given a random variable X : Ω → R, we can define a set function on
(R,B(R)) as follows:

P ◦X−1(E) := P{X ∈ E}, ∀E ∈ B(R). (5.1)

The notation is ugly, but motivated by the fact that {X ∈ E} is another way
to write X−1(E), so that P ◦X−1(E) = P(X−1(E)).

Lemma 5.1 P ◦X−1 is a probability measure on (R,B(R)).
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Definition 5.2 The measure P◦X−1 is called the distribution of the random
variable X.

Proof of Lemma 5.1 The proof is straightforward: P ◦X−1(?) = 0, and
P ◦X−1 is countably additive on (R,B(R)), since P is countably additive on
(Ω,F), and since X is a function. �

The above lemma tells us that to each random variable on the ab-
stract probability space (Ω,F,P), we can associate a real probability space
(R,B(R),P ◦X−1). The converse is also true.

Lemma 5.3 If µ is a probability measure on (R,B(R)), then there exists a
random variable X whose distribution is µ.

Proof Define F to be the distribution function of µ; i.e.,

F (x) := µ ((−∞, x]) , ∀x ∈ R. (5.2)

Note that (i) F is nondecreasing, right-continuous, and has left-limits; (ii)
F (−∞) = 0; and (iii) F (∞) = 1. While F need not have an inverse (it would
if and only if F is strictly increasing), we can consider its “right-continuous
inverse,”

F−1(x) := inf {y : F (y) ≥ x} , ∀x ∈ R, (5.3)

where inf ? := ∞. The key feature of F−1 is that for any a ∈ [0, 1] and
x ∈ R,

F−1(a) ≤ x if and only if a ≤ F (x). (5.4)

Consider the Borel–Steinhaus probability space (Ω,F,P) where Ω := [0, 1],
F = B(Ω), and P := the Lebesgue measure on (Ω,F). For all ω ∈ Ω
define X(ω) := F−1(ω) which is clearly a random variable on (Ω,F,P).
Then, by (5.4), P{X ≤ x} is the Lebesgue measure of all ω ∈ [0, 1]
such that ω ≤ F (x), and this equals F (x). What this shows is that
P{X ∈ (−∞, x]} = µ((−∞, x]). Now proceed, as one does in integration,
and prove whenever E is a finite disjoint unions of half-infinite half-closed
intervals of the form (−∞, x], then P{X ∈ E} = µ(E). By the monotone
class theorem (Theorem 1.27), for all Borel sets E ⊆ R, P{X ∈ E} = µ(E).
�
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Since we have introduced distribution functions, let me mention a classi-
fication theorem for them too.

Theorem 5.4 A function F : R → [0, 1] is the distribution function of a
probability measure if and only if (i) F is nondecreasing and right-continuous;
and (ii) F (−∞) = 0 and F (∞) = 1.

Proof The necessity of (i) and (ii) has already been mentioned without
proof; cf. the proof of Lemma 5.3. Indeed, suppose F (x) = µ((−∞, x]) for a
probability measure µ on (R,B(R)). Then, F is nondecreasing because µ is
a measure (specifically, since A ⊆ B ⇒ µ(A) ≤ µ(B).) It is right-continuous,
thanks to the outer-continuity of the measure µ, and the assertions about
F (±∞) are obvious.

Conversely, suppose F : R → [0, 1] satisfies (i) and (ii). We can the define
µ((a, b]) := F (b)−F (a) for all real numbers a < b. Extend the definition of µ
to finite disjoint unions of intervals of type (ai, bi] by setting µ(∪n

i=1(ai, bi]) :=∑n
i=1[F (bi) − F (ai)]. It is not too difficult to check that (a) this is well-

defined; and (b) µ is countably additive on the algebra of all disjoint finite
unions of intervals of the type (a, b]. Now we apply Carathéodory’s theorem
(Theorem 1.15) to extend µ uniquely to a measure on all ofB(R). It remains
to check that this extended µ is a probability measure, but this follows from
µ(R) = limn µ((−∞, n]) = F (∞) = 1, thanks to the inner-continuity of
measures. �

Definition 5.5 If p > 0, then the pth moment of a random variable X is
defined as E{Xp} provided that X ≥ 0, a.s., or X ∈ Lp(P).

Lemma 5.6 If X ≥ 0, a.s. or X ∈ Lp(P), then E{Xp} =
∫
Ω
Xp dP =∫∞

−∞ xp µ(dx), where µ is the distribution function of X. More generally still,

if h : R → R is measurable, then E{h(X)} =
∫
Ω
h(X) dP =

∫∞
−∞ h(x)µ(dx),

provided that the integrals exist.

Proof For any random variable Y , E{Y } =
∫
Ω
Y (ω) P(dω) provided that

the integral is well-defined. Apply this to Y := h(X) for the integral represen-
tation which involves the integrals on Ω. The second integral representations
are the real message of this lemma since they state that in order for us to
compute a moment (say), we can compute a real integral as opposed to an
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abstract integral. First one works with elementary random variable; i.e.,
when X = α1A where A ∈ F, and α ∈ R. Note that the distribution of
X is µ = P(A)δα + [1 − P(A)]δ0, where δx denotes the point mass at {x}.
Thus in this case, E{h(X)} = h(α)P(A) + h(0)[1 − P(A)] =

∫
h(x)µ(dx).

Next, one checks this formula for a simple random variable X; i.e., one
of the form X =

∑n
i=1 αn1Ai

, where A1, . . . , An ∈ F are disjoint, and
α1, . . . , αn ∈ R. Then, µ =

∑n
i=1 δαi

P(Ai) + δ0[1 − P(∪n
i=1Ai)], and

E{h(X)} =
∑n

i=1 h(αi)P(Ai) + h(0)[1− P(A)] =
∫∞
−∞ h(x)µ(dx). Then pro-

ceed as one does when constructing the abstract integral. �

Remark 5.7 At this point, you should try and compute the pth moments,
if well-defined, of the distributions of Examples 1.17–1.19.

Definition 5.8 The variance and the standard deviation of the random
variable X are respectively defined as Var(X) := E[(X − E{X})2] and
SD(X) :=

√
Var(X). If (X, Y ) is a random variable,5.1 then the covariance

and correlation between X and Y are respectively defined as Cov(X, Y ) :=
E{(X−E[X])·(Y −E[Y ])}, and ρ(X, Y ) := Cov(X, Y )÷{SD(X)×SD(Y )}.5.2

Lemma 5.9 (Computational Formulas) Provided that they exist,

Var(X) = E{X2} − [E{X}]2
Cov(X, Y ) = E{XY } − E{X} · E{Y }. (5.5)

Furthermore, if X ≥ 0, a.s., then for any p ≥ 1,

E{Xp} = p

∫ ∞

0

λp−1P{X ≥ λ} dλ. (5.6)

In particular,
∑∞

n=1 P{X ≥ n} ≤ E{X} ≤∑∞
n=0 P{X ≥ n}.

5.1Recall that this means only that (X, Y ) : Ω → R
2 is Borel measurable.

5.2Correlation was invented by K. Pearson in 1893.
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3 Independent Random Variables

Definition 5.10 The events E1, . . . , En are independent5.3 if

P(E1 ∩ · · · ∩ En) =

n∏
j=1

P(Ej). (5.7)

The random variables X1, . . . , Xn : Ω → Rd are independent if for all
A1, . . . , An ∈ B(Rd), X−1

1 (A1), . . . , X
−1
n (An)(∈ F) are independent. Equiva-

lently, X1, . . . , Xn are independent if for all measurable A1, . . . , An,

P {X1 ∈ A1, . . . , Xn ∈ An} =
n∏

j=1

P {Xj ∈ Aj} . (5.8)

An arbitrary collection {Ei; α ∈ I} of events is independent if for all
i1, . . . , in ∈ I, Ei1 , . . . , Ein are independent. An arbitrary collection {Xi; i ∈
I} is independent if for all i1, . . . , in ∈ I, Xi1, . . . , Xin are independent ran-
dom variables. If (Xi; i ∈ I) are independent and identically distributed,
then we say that the Xi’s are i.i.d.

Remark 5.11 A word of caution is in order here. One can construct random
variables X1, X2, X3, such whenever i 6= j, Xi and Xj are independent, but
X1, X2, X3 are not independent.

Lemma 5.12 An equivalent definition of the independence of random vari-
ables is the following: X1, . . . , Xn are independent if for all nonnegative mea-
surable functions φ1, . . . , φn : Rd → R,

E

[
n∏

j=1

φj(Xj)

]
=

n∏
j=1

E [φj(Xj)] . (5.9)

Consequently, if X1, . . . , Xn are independent, then so are h1(X1), . . . , hn(Xn)
for any Borel measurable functions h1, . . . , hn : R → R.

5.3The definition of independence—also known as “statistical independence”—is due to
de Moivre [dM18].
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Proof I will prove only the first assertion; the second is a ready consequence
of the first.

When the φj’s are elementary functions, this is the definition of indepen-
dence. By linearity (in each of the φj’s), the above display remains to hold
when the φj ’s are simple functions. Take limits to obtain the full result. �

We will next see that assuming independence places severe restrictions
on the restrictions on the random variables in question. But first, we need a
definition.

Definition 5.13 The σ-algebra generated by {Xi;∈ i ∈ I} is the smallest
σ-algebra with respect to which all of the Xi’s are measurable; it is often
written as σ(Xi; i ∈ I). We say that a random variable Y is independent of
σ(Xi; i ∈ I) when Y is independent of {Xi; i ∈ I}. Equivalently, we might
say that σ(Y ) and σ(Xi; i ∈ I) are independent. The tail σ-algebra T of
random variables X1, X2, . . . is the σ-algebra, T := ∩∞n=1σ(Xn, Xn+1, . . .).

The following tell us that our definitions of independence are compatible.
Moreover, the last portion implies that in order to prove that two real-valued
random variables X and Y are independent, it is necessary (and sufficient)
to prove that for all x, y ∈ R, P{X ≤ x, Y ≤ y} = P{X ≤ x}P{Y ≤ y}.

Lemma 5.14 Let X and Y denote two topological spaces. Then:

(i) For all random variables X : Ω → X,

σ(X) =
{
X−1(A) : A ∈ B(X)

}
. (5.10)

(ii) If X1, X2, . . . are random variables all taking values in X, then a Y-
valued random variable Y is independent of σ(X1, X2, . . .) if and only
if Y is independent of (X1, X2, . . .).

(iii) If Y −1(E) is independent of (X1, X2, . . .)
−1(F ) for all E ∈ A and all

F ∈ G—where A and G are subalgebras that generate B(Y) and B(X∞)
respectively—then Y and (X1, X2, . . .) are independent.

The proof of this is relegated to the exercises. Instead, I turn to the following
strange consequence of independence.
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Theorem 5.15 (The Kolmogorov Zero-One Law) If X1, X2, . . . are in-
dependent random variables, then their tail σ-algebra T is trivial in the sense
that for all E ∈ T, P(E) = 0 or 1. Consequently, any T-measurable random
variable is a constant, a.s.

Proof Our strategy is to prove that any E ∈ T is independent of itself,
so that P(E) = P(E ∩ E) = P(E)P(E): Since E ∈ T, it follows that E is
independent of σ(X1, . . . , Xn−1). Moreover, because this is true for each n,
E is independent of the smallest σ-algebra that contains ∪nσ(X1, . . . , Xn−1)
(this is written as ∨nσ(X1, . . . , Xn−1)). In other words, E is independent of
all of the Xi’s, and hence of itself.

To conclude this proof, suppose Y is T-measurable; we intend to prove
that there exists a constant c such that P{Y = c} = 1. Since Y = Y +− Y −,
we can assume—without loss of generality—that Y ≥ 0, a.s. in which case
E{Y } exists but could be infinite. By replacing Y by Y ∧ n and letting
n→∞ we can assume, without loss in generality, that Y is also bounded. Let
c := E{Y }; this is a positive and finite number, and for all ε > 0, P{Y ≤ c+ε}
is 0 or 1. But c = E{Y } ≥ E{Y ;Y > c + ε} ≥ (c + ε)P{Y > c + ε}. This
shows that for all ε > 0, P{Y ≤ c + ε} = 1. Hence, Y ≤ c, a.s. (why?)
Similarly, one proves that Y ≥ c, a.s. and thus Y = c, a.s. �

Example 5.16[A Very Weak Law of Large Numbers] Suppose X1, X2, . . .
are independent, and define Sn := X1 + · · · + Xn. Then, the following are
almost surely constants: lim supn n

−1Sn and lim infn n
−1Sn. Furthermore,

P{limn n
−1Sn exists} = 0 or 1, and if this probability is 1, then the said limit

is also a constant, almost surely.

Our next result states that independent random variables exist.

Theorem 5.17 If µ1, µ2, . . . are probability measures on (Rd ,B(Rd)), then
there exist independent random variables X1, X2, . . .—all on a suitable prob-
ability space—such that the distribution of Xi is µi for each i = 1, 2, . . ..

Proof Without loss of too much generality, we will assume that d = 1.
This is for notational convenience only.

For every integer n ≥ 1 let Ωn := Rn , Fn := B(Rn), and µn := µ1 ×
· · · × µn. Clearly, (µn) is a consistent family of probability measures. By
the Kolmogorov extension theorem (Theorem 3.17 and the accompanying
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Remark 3.19), there exists a probability measure P on (R∞ ,B(R∞)) that
extends µ1, µ2, . . . . Finally, define for all ω ∈ R∞ and all integers i ≥ 1,
Xi(ω) := ωi. Since X−1

i (Ei) = Ei, P{Xi ∈ E} = µi(E), and P{X1 ∈
E1, . . . , Xn ∈ En} = µn(X−1

1 (E1) × · · · × X−1
n (En)) =

∏n
j=1 µj(Ej), so that

the Xi’s are independent and have the asserted distributions. The extension
to the case of Rd if obtained by letting, instead, Ωn := (Rd)n, etc. �

Corollary 5.18 Independent L2(P)-valued random variables in R are un-
correlated.

Proof Suppose X and Y are independent real-valued random variables both
in L2(P). By the Cauchy–Bunyakovsky–Schwarz inequality (Corollary 2.26),
|E{XY }| ≤ ‖X‖2 · ‖Y ‖2 < ∞. Moreover, by Theorem 5.17, E{XY } =
E{X} · E{Y }. Thanks to Lemma 5.9, Cov(X, Y ) = 0, which means that
ρ(X, Y ) = 0. �

Let us conclude this section with a result of computational utility whose
second portion is a consequence of Corollary 5.18.

Corollary 5.19 If X1, . . . , Xn are uncorrelated real random variables in
L2(P), then Var(X1 + · · ·+Xn) =

∑n
j=1 Var(Xj). In particular, this holds if

the Xi’s are independent.

Proof We can use induction on n to reduce it to the case n = 2. In this
case, we can use Lemma 5.9 to deduce that

Var(X1 +X2) = E
{
(X1 +X2)

2
}− (E{X1 +X2})2

= Var(X1) + Var(X2)− 2Cov(X1, X2).
(5.11)

The result follows from this. �

4 Khintchine’s Weak Law of Large Numbers

The following so-called weak law of large numbers (WLLN) is a consequence
of Corollary 5.9, and states that sample averages are, with high probability,
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close to population averages.5.4 While the weak law is subsumed by the
forthcoming strong law of large numbers, it gives us a good opportunity to
learn more about the Markov and Chebyshev inequalities, as well as the so-
called “truncation method.” The latter was invented by A. A. Markov in
1907, and has been in heavy use in probability and analysis since.

Throughout this section, X1, . . . , Xn are independent and identically dis-
tributed (i.i.d.) real-valued random variables, and

Sn := X1 + · · ·+Xn, ∀n ≥ 1. (5.12)

Theorem 5.20 (The WLLN; Khintchine [Khi29]) If X1, X2, . . . are i.i.d.
real-valued random variables in L1(P), then

Sn

n

P−→ E{X1}, as n→∞. (5.13)

Proof We prove this in two instructive steps.
Step 1. The L2-Case.

This is a particularly simple result when X1, X2, . . . are assumed to be in
L2(P). Indeed, note that the expectation of n−1Sn is E{X1}. Thus, Cheby-
shev’s inequality (Corollary 2.16) implies that for all ε > 0,

P

{∣∣∣∣Sn

n
− E{X1}

∣∣∣∣ ≥ ε

}
≤ 1

ε2
Var

(
Sn

n

)
=

1

n2ε2
Var(Sn) =

1

n2ε2

n∑
j=1

Var(Xj).
(5.14)

The last equality is a consequence of Corollary 5.19. Since the Xj ’s are
identically distributed, they have the same variance. Therefore,

P

{∣∣∣∣Sn

n
− E{X1}

∣∣∣∣ ≥ ε

}
≤ Var(X1)

nε2
, (5.15)

and this goes to zero as n → ∞, thus proving the corollary when the Xi’s
are in L2(P).

5.4The first weak law of large numbers was proved by J. Bernoulli [Ber13] for ±1 random
variables. See Adams [Ada74] for a fascinating account of the history of this classical
theorem.
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Step 2. The General Case.
When the Xi’s are assumed only to be in L1(P), we use a truncation
argument : For i ≤ n and given a fixed but small δ ∈ (0, 1), define
Xi,n := Xi1{|Xi|≤δn}. For each fixed n, X1,n, . . . , Xn,n are independent identi-
cally distributed random variables; furthermore, since |Xi,n| ≤ δn is bounded,
they are all in L2(P). Thus, writing Sn,n := X1,n + · · ·+Xn,n, we have

P

{∣∣∣∣Sn,n

n
− E{X1,n}

∣∣∣∣ ≥ ε

}
≤ Var(X1,n)

nε2
≤ E{X2

1,n}
nε2

, (5.16)

thanks to Lemma 5.9. On the other hand, E{X2
i,n} ≤ E{X2

i ; |Xi| ≤ nδ} ≤
nδ‖X1‖1. This yields,

P

{∣∣∣∣Sn,n

n
− E{X1,n}

∣∣∣∣ ≥ ε

}
≤ δ

ε2
‖X1‖1. (5.17)

Now P{Xi,n 6= Xi} = P{|Xi| ≥ nδ} ≤ (nδ)−1E{|X1|; |X1| ≥ nδ} :=
(nδ)−1En,δ, thanks to the Markov inequality (Theorem 2.15). Therefore, by
finite subadditivity of measures,

P {∃i ≤ n : Xi,n 6= Xi} = P

(
n⋃

i=1

{Xi,n 6= Xi}
)

≤
n∑

i=1

P{Xi,n 6= Xi} ≤ En,δ

δ
.

(5.18)

Since ‖X1‖1 <∞, the dominated convergence theorem (Theorem 2.22) guar-
antees that limn En,δ = 0. In particular, there exists N(δ) such that for all
n ≥ N(δ), En,δ ≤ δ2. Subsequently, for all n ≥ N(δ),

P {∃i ≤ n : Xi,n 6= Xi} ≤ δ. (5.19)

Finally, by Jensen’s inequality (Theorem 2.28), |E{Z}| ≤ E{|Z|}, so that for
all n ≥ N(δ),

|E{X1,n} − E{X1}| = |E{X1; |X1| > nδ}|
≤ E {|X1|; |X1| ≥ nδ} = En,δ ≤ δ2.

(5.20)
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Therefore, for all ε > δ2 > 0, and n ≥ N(δ),{∣∣∣∣Sn

n
− E{X1}

∣∣∣∣ ≥ ε

}
⊆
{∣∣∣∣Sn,n

n
− E{X1}

∣∣∣∣ ≥ ε

}
∪ {∃j ≤ n : Xj,n 6= Xj}

⊆
{∣∣∣∣Sn,n

n
− E{X1,n}

∣∣∣∣ ≥ ε− δ2

}
∪ {∃j ≤ n : Xj,n 6= Xj} .

(5.21)

Consequently, by (5.17) and (5.19), for all n ≥ N(ε),

P

{∣∣∣∣Sn

n
− E{X1}

∣∣∣∣ ≥ ε

}
≤ δ

(ε− δ2)2
‖X1‖1 + δ. (5.22)

Let n→∞ and then δ ↓ 0 to prove the theorem. �

5 Kolmogorov’s Strong Law of Large Num-

bers

We are ready to state and prove the strong law of large numbers, so named
because it is a stronger theorem than the weak law of large numbers (The-
orem 5.20). Throughout this section, X1, . . . , Xn are i.i.d. (recall that this
means independent and identically distributed) random variables taking val-
ues in R. We will write, as before, Sn := X1 + · · ·+Xn for the partial sum
process.

Theorem 5.21 (The Kolmogorov Strong Law) If the Xj’s are in L1(P),
then almost surely,

lim
n→∞

Sn

n
= E{X1}. (5.23)

Conversely, if P {lim supn n
−1|Sn| < +∞} > 0, then the Xj’s are in L1(P),

and the strong law (5.23) holds.

Remark 5.22 In fact, independence can be relaxed to the weaker pairwise
independence.5.5 This extension was found by N. Etemadi [Ete81] whose
proof is of independent interest.

5.5This is the case where any two Xi and Xj are independent, although X1, X2, . . . need
not be independent.
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There are many proofs of this fact; I will discuss the one that I regard
as most informative. This proof relies on two key technical results, either of
which is interesting in its own right.

Theorem 5.23 (Borel–Cantelli; [Bor09, Can33]) If A1, A2, . . . are events,
and if

∑∞
n=1 P(An) < +∞, then

∑∞
n=1 1An < +∞, a.s. The converse holds

if the Ai’s are uncorrelated, in particular, pairwise independent.

In the case that the An’s are independent, the asserted necessary and suffi-
cient condition is due to Borel [Bor09]. Cantelli [Can33] found that indepen-
dence is not needed in the first half of the theorem.

Proof By the monotone convergence theorem (Theorem 2.21),

∞∑
n=1

P(An) = lim
N→∞

N∑
n=1

P(An) = lim
N→∞

E

{
N∑

n=1

1An

}

= E

{ ∞∑
n=1

1An

}
.

(5.24)

In particular, whenever
∑

n P(An) is finite, so is E{∑n 1An}. But any non-
negative random variable that is in L1(P) is a.s. finite (why?); thus,

∑
n 1An

is finite almost surely.
The converse is more interesting: Suppose that

∑∞
n=1 P(An) = +∞, and

that the Aj ’s are uncorrelated. Let ZN :=
∑N

n=1 1An for simplicity, and note
that by Lemma 5.9, for any N ≥ 1,

Var(ZN) =

N∑
n=1

Var (1An) =

N∑
n=1

P(An) [1− P(An)]

≤
N∑

n=1

P(An) = E{ZN}.
(5.25)

We use this, together with Chebyshev’s inequality (Corollary 2.16), to see
that

P
{∣∣∣ZN − E{ZN}

∣∣∣ ≥ εE{ZN}
}
≤ Var(ZN)

ε2 (E{ZN})2 ≤
1

ε2E{ZN} . (5.26)

In particular, as N → ∞, ZN

E{ZN}
P−→ 1. (Why?) Since

∑N
n=1 P(An) ↑∑∞

n=1 P(An) and this is assumed to be infinite, we have shown that as
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N → ∞, ZN converges in probability to +∞; i.e., for any λ > 0
limN→∞ P{|ZN | > λ} = 1. Since

∑∞
n=1 1An ≥ ZN for all N , this shows

that P{∑∞
n=1 1An ≥ λ} = 1 for all λ. Hence,

∑∞
n=1 1An = +∞, almost

surely. �

We are now prepared to prove the second half of Theorem 5.21.

Proof of Theorem 5.21 (Necessity) For this part we suppose that the
Xj ’s are not in L1(P); i.e., that E{|X1|} = +∞. We will then show that this
implies that a.s., lim supn n

−1|Sn| = +∞.
According to (5.6) of Lemma 5.9, for any k > 0,

k−1E{|X1|} =

∫ ∞

0

P{|X1| ≥ kλ} dλ =

∞∑
n=1

∫ n

n−1

P{|X1| ≥ kλ} dλ

≤
∞∑

n=1

P{|X1| ≥ k(n− 1)} =
∞∑

n=0

P{|Xn| ≥ kn}.
(5.27)

Since the left-hand side is infinite, by the independence half of the Borel–
Cantelli lemma (Theorem 5.23), with probability one, |Xn| ≥ kn for infinitely
many n’s. Since |Sn| ≥ |Xn| − |Sn−1|, then either |Sn−1| ≥ kn

2
infinitely

often, or else for all but a finite number of n’s, |Sn| ≥ |Xn| − kn
2

. In any
event, it follows that with probability one, |Sn| ≥ kn

2
for infinitely many

n’s. In particular, there exists a null set N(k) such that for all ω 6∈ N(k),
lim supn n

−1|Sn(ω)| ≥ k
2
. On the other hand, N := ∪∞k=1N(k) is a null set

(why?), and for all ω 6∈ N , lim supn n
−1|Sn(ω)| = +∞, almost surely, as was

to be shown. �

The second part of the proof of the strong law of large numbers is a
maximal L2-inequality of A. N. Kolmogorov. Although they may be new to
you at this point, maximal inequalities are some of the fundamental facts in
probability and analysis.

Theorem 5.24 (The Kolmogorov Maximal Inequality) 5.6 If Sn :=
X1 + · · · + Xn, and if the Xj’s are independent (not necessarily i.i.d.) and
in L2(P), then for any λ > 0, and all n = 1, 2, . . .,

P

{
max
1≤k≤n

∣∣∣Sk − E{Sk}
∣∣∣ ≥ λ

}
≤ Var(Sn)

λ2
. (5.28)

5.6This result, together with its history, is well-explained in Kolmogorov [Kol33, Kol50]
for instance.
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Remark 5.25 If maxk≤n |Sk − E{Sk}| were replaced by |Sn − E{Sn}|, then
the resulting weaker inequality would follow from the Chebyshev inequality
(Corollary 2.16).

Proof Without loss of any generality, we may assume that E{Xi} = 0, for
otherwise, we can consider Xi − E{Xi} in place of Xi. Note that E{Sn} =
nE{X1} = 0 in this case.

For any k ≥ 2, let Ak denote the event that |Sk| ≥ λ but that |S`| < λ
for all ` < k. In symbols,

Ak := {|Sk| ≥ λ} ∩
k−1⋂
`=1

{|S`| < λ} . (5.29)

Thinking of the index k as “time,” Ak denotes the event that the first time
the random process k 7→ Sk leaves (−λ, λ) occurs at time k. Since the Ak’s
are disjoint events, and because S2

n ≥ 0,

E{S2
n} ≥

n∑
k=1

E
{
S2

n;Ak

}
=

n∑
k=1

E
{
(Sn − Sk + Sk)

2;Ak

}
≥ 2

n∑
k=1

E {Sk(Sn − Sk);Ak}+
n∑

k=1

E{S2
k ;Ak}.

(5.30)

For any ω ∈ Ak, S
2
k(ω) ≥ λ2. Hence,

E{S2
n} ≥ 2

n∑
k=1

E {Sk(Sn − Sk);Ak}+ λ2
n∑

k=1

P(Ak)

= 2
n∑

k=1

E {Sk(Sn − Sk);Ak}+ λ2P

{
max
1≤k≤n

|Xk| ≥ λ

}
.

(5.31)

The event Ak and the random variable Sk both depend (in a measurable
way) on X1, . . . , Xk, whereas Sn − Sk = Xk+1 + · · · + Xn is independent of
X1, . . . , Xk. Consequently, (Sn−Sk) is independent of Sk1Ak

(Lemma 5.12),
and from this we get E{(Sn − Sk)Sk;Ak} = E{Sn − Sk} × E{Sk;Ak} = 0,
since E{Sn} = E{Sk} = 0. This proves the result. �
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Proof of Theorem 5.21 Throughout, we may assume, without loss of
generality, that E{X1} = 0, for otherwise, consider Xi − E{Xi} in place of
Xi.

The proof of the strong law simplifies considerably when we assume fur-
ther that X1 ∈ L2(P). This will be the first step. The second step uses a
truncation argument to reduce to a problem about L2-random variables. Al-
though we do not need the first step to go through the second, it is a simpler
setting in which one can introduce two important techniques: Blocking and
subsequencing.

Step 1. The L2-Case.
If the Xj ’s are in L2(P), then by the Kolmogorov maximal inequality (The-
orem 5.24), for all n ≥ 1 and ε > 0,

P

{
max
1≤k≤n

|Sk| ≥ εn

}
≤ E{S2

n}
n2ε2

=
‖X1‖2

2

nε2
, (5.32)

since E{S2
n} = Var(Sn) =

∑n
j=1 Var(Xj) = nE{X2

1} (cf. Lemma 5.9). Now
replace n by 2n to see that

∞∑
n=1

P

{
max

1≤k≤2n
|Sk| ≥ ε2n

}
≤

∞∑
n=1

‖X1‖2
2

2nε2
< +∞. (5.33)

By the Borel–Cantelli lemma (Theorem 5.23), with probability one, for all
but a finite number of n’s, max1≤k≤2n |Sk| ≤ ε2n. Now any integer m can be
sandwiched between 2n and 2n+1 for some n. Thus, |Sm| ≤ max1≤k≤2n+1 |Sk|,
which is, with probability one, eventually less than ε2n+1 ≤ 2εm. We have
shown that for any fixed ε > 0, there exists a null set N(ε) such that for all
ω 6∈ N(ε), lim supmm

−1|Sm(ω)| ≤ ε. Let N := ∪ε∈Q+N(ε), and note that
thanks to countable subadditivity of P, N is a null set. Moreover, for all
ω 6∈ N , limm→∞m−1|Sm| = 0, which is the desired result in the L2-case.

Aside. The point of the preceding proof is that while Sn and Sn+1

are not close to being independent, the random variables S2n and
S2n+1 are. Of course, this is an informal statement, since being
“close to independent” is too vague to be meaningful.

Step 2. The L1-Case.
As in the proof of the weak law of large numbers (Theorem 5.20), we truncate
the Xi’s. However, the truncation “levels” are chosen more carefully: For all
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i ≥ 1, define X ′
i := Xi1{|Xi|≤i}, and let S ′n := X ′

1 + · · ·+X ′
n. Since S ′i is a sum

of i independent (though not i.i.d.) random variables, by the Kolmogorov
maximal inequality (Theorem 5.24), for all n ≥ 1 and ε > 0,

P

{
max
1≤k≤n

∣∣∣S ′k − E{S ′k}
∣∣∣ ≥ nε

}
≤ Var(S ′n)

n2ε2
. (5.34)

Furthermore,

Var(S ′n) =
n∑

j=1

Var(X ′
j) ≤

n∑
j=1

E{(X ′
j)

2} =
n∑

j=1

E{X2
1 ; |X1| ≤ j}. (5.35)

Thus,

∞∑
n=1

P

{
max

1≤k≤2n

∣∣∣S ′k − E{S ′k}
∣∣∣ ≥ ε2n

}

≤
∞∑

n=1

2n∑
j=1

E{X2
1 ; |X1| ≤ j}
4nε2

=
∑
j≥1

∑
n≥log2(j)

E{X2
1 ; |X1| ≤ j}
4nε2

.

(5.36)

On the other hand, for any x > 0,
∑

n≥x 4−n ≤ 4
3
4−x. Thus,

∞∑
n=1

P

{
max

1≤k≤2n

∣∣∣S ′k − E{S ′k}
∣∣∣ ≥ ε2n

}

≤ 4

3ε2

∑
j≥1

E{X2
1 ; |X1| ≤ j}
j2

≤ 4

3ε2
E

X2
1

∑
j≥|X1|

j−2

 .

(5.37)

But for any x > 1,∑
j≥x

1

j2
≤
∫ ∞

x−1

du

u2
= (x− 1)−1 = x−1 + {x(x− 1)}−1 ≤ 2

x
. (5.38)

On the other hand, if x ∈ (0, 1], then
∑

j≥x j
−2 ≤ ∑∞

j=1 j
−2 ≤ 2. In other

words, |X1|
∑

j≥|X1| j
−2 ≤ 21{|X1|>1} + 21{|X1|≤1} = 2. Thus,

∞∑
n=1

P

{
max

1≤k≤2n

∣∣∣S ′k − E{S ′k}
∣∣∣ ≥ ε2n

}
≤ 8

3ε2
E{|X1|} < +∞. (5.39)
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Now use the proof of Step 1 to deduce that limn→∞ n−1(S ′n − E{S ′n}) = 0,
almost surely. But the fact that X1 is mean-zero implies that |E{S ′n}| =
|∑n

j=1 E{X1; |X1| ≤ j}| = |∑n
j=1 E{X1; |X1| > j}| ≤ ∑n

j=1 E{|X1|; |X1| >
j}. In particular, since limj E{|X1|; |X1| > j} = 0 (cf. Theorem 2.22), we
have limn→∞ n−1E{S ′n} = 0. It suffices to show that

lim
n→∞

Sn − S ′n
n

= 0, a.s. (5.40)

To prove this, note that

E

{ ∞∑
j=1

1{|Xj |>j}

}
=

∞∑
j=1

P{|X1| ≥ j} ≤ E{|X1|} < +∞; (5.41)

cf. Lemma 5.9. Consequently, with probability one, for all but a finite
number of j’s, |Xj| ≤ j, and this means that supn |Sn − S ′n| < +∞, a.s.
(Why?). This proves (5.40), whence the strong law. �

6 Five Applications

I will conclude this chapter by applying several of these ideas to five ap-
plied problems. The first three of these topics are generally considered to be
fundamental scientific discoveries, and are at the core of the theories of ap-
proximation, information, and empirical processes, respectively. Topics four
and five are elegant, as well as natural starting-points for learning more about
some of the far-reaching discoveries in discrete mathematics and numerical
integration respectively.

6.1 The Weierstrass Approximation Theorem

The Weierstrass approximation theorem is one of the fundamental approx-
imation theorems of analysis. It states that every continuous function (on
[0, 1], say) can be uniformly approximated to within any given ε > 0 by a
polynomial. We now use the proof of the weak law (Theorem 5.20) to prove
the said Weierstrass theorem; this proof is due to S. N. Bernstein.
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Theorem 5.26 (Bernstein [Ber13]) Given a continuous f : [0, 1] → R,
define the Bernstein polynomial Bnf by,

Bnf(x) :=

n∑
j=0

(
n

j

)
xj(1− x)n−jf

(
j

n

)
, ∀x ∈ [0, 1]. (5.42)

Then, Bnf is a polynomial of order n, and limn |Bnf(p)−f(p)| = 0 uniformly
in p ∈ [0, 1].

Proof We start with a bit of undergraduate probability: If X1, X2, . . . , Xn

are i.i.d. with P{X1 = 0} = 1 − P{X1 = 1} = 1 − p where p ∈ [0, 1] is
a fixed number, then P{Sn = k} =

(
n
k

)
pk(1 − p)n−k for k = 0, . . . , n, and

P{Sn = k} = 0 otherwise. Here, as before, Sn := X1 + · · · + Xn, and
its distribution is the so-called binomial distribution. It has the following
statistical significance: If Xj ’s are the results of success/failure i.i.d. trials
with Xk = 1 if and only if the kth trial resulted in a success, then Sn denotes
the total number of successes in this random experiment, and its distribution
is binomial.

Since f is uniformly continuous, for each ε > 0 we can choose δ > 0
such that for all p, q ∈ [0, 1] with |p − q| ≤ δ, we have |f(p) − f(q)| ≤ ε.
Now write Bnf(p) = E{f(An)}, where An := n−1Sn denotes the average
number of successes. We decompose this as Bnf(p) = E{f(An); |An − p| ≤
δ} + E{f(An); |An − p| > δ} := T1 + T2. By the Chebyshev inequality
(Corollary 2.16), |T2| ≤ KP{|An − p| ≥ δ} ≤ Kδ−2Var(An), where K :=
supx |f(x)|. But by Lemma 5.9, Var(An) = n−2Var(Sn) = n−1Var(X1) =
n−1p(1− p) ≤ (4n)−1. Consequently, we see that |T2| ≤ K(4n)−1, uniformly
in p ∈ [0, 1]. It is also clear that∣∣∣T1 − f(p)

∣∣∣ ≤ ∣∣∣T1 − f(p) · P {|An − p| ≤ δ}
∣∣∣+KP {|An − p| ≥ δ}

≤ ε+
K

4n
,

(5.43)

since |T1 − f(p) · P{|An − p| ≤ δ}| = |E{f(An) − f(p); |An − p| ≤ δ}| ≤
E{|f(An) − f(p)|; |An − p| ≤ δ}. Since our bounds on both T1 and T2 hold
uniformly in p ∈ [0, 1], this concludes the proof. �
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6.2 The Shannon Entropy Theorem

Our next application of independence is one of the starting-points of the work
of Shannon [Sha48, SW49] who discovered various startling connections be-
tween the thermodynamical notion of relative entropy and the mathematical
theory of communication.

Consider a finite “alphabet” A := {σ1, . . . , σm}, and the probability mea-
sure µ :=

∑m
j=1 pjδσj

, defined on the power set of A , where δx denotes the
point mass at x ∈ Ω. Thus, µ(E) =

∑m
j=1 1E(σj)pj , for all E ⊆ A . Equiv-

alently, if X is a random variable on some probability space (Ω,F,P) with
distribution µ, then P{X = σj} = pj for all j = 1, . . . , m.

Definition 5.27 Any element σi of A is a symbol or letter. A word w :=
(w1, . . . , wn) of length n is a vector of n symbols. Let W n denote the collection
of all words of length n, and define m counting functions Cn

1 , . . . , C
n
m : W n →

N by Cn
` (w) =

∑n
k=1 1{σ`}(wk) (` = 1, . . . , m, w ∈ W n).

That is, Cn
` (w) is the number of times the symbol σ` appears in the word w.

Definition 5.28 Fix a sequence λ1, λ2, . . . > 0 such that limn n
−1λn = 0.

Then define the n-letter word w ∈ W n to be λ-typical if for all ` = 1, . . . , m,
we have |Cn

` (w)− np`| ≤ λn. Otherwise, w is said to be λ-atypical.

In other words, a word w is “typical” if the proportion of times that σ`

appears as a symbol in w is p` give or take a negligible amount.

Theorem 5.29 (Shannon [Sha48]) Fix any sequence λn > 0 such that:
(i) n−1λn → 0; and (ii) lim supn nλ

−2
n < 4m−1. Also define Tn(λ) to be the

number of λ-typical words of length n. Then,

lim
n→∞

1

n
log2 (Tn(λ)) = −H(p), (5.44)

where log2 is the base-2 logarithm, and H(p) :=
∑m

`=1 p` log2(p`) is the relative
entropy of the sequence p := (p1, . . . , pm).

Proof Let X1, X2, . . . denote i.i.d. random variables with distribution µ, all
defined on some probability space (Ω,F,P). Write Wn := (X1, . . . , Xn)—this
is a randomly-sampled word of length n—and define for all w ∈ W n ,

πn(w) := P {Wn = w} = P{X1 = w1, . . . , Xn = wn}. (5.45)
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This is the probability of ever sampling the word w. But then∑
w∈Wn :

w is λ-atypical

πn(w) = P
{
∃` = 1, . . . , m :

∣∣∣Cn
` (Wn)− np`

∣∣∣ > λn

}

≤
m∑

`=1

P
{∣∣∣Cn

` (Wn)− np`

∣∣∣ > λn

}
.

(5.46)

Moreover, Cn
` (Wn) =

∑n
j=1 1{Xj=σ`} is a sum of n i.i.d. random variables

with mean p` and variance p`(1−p`) ≤ 1
4
. Thus, by the Chebyshev inequality

(Corollary 2.16),

lim sup
n→∞

∑
w∈Wn :

w is λ-atypical

πn(w) ≤ lim sup
n→∞

mn

4λ2
n

:= δ < 1. (5.47)

On the other hand, the independence of the Xjs assures us that for any w ∈
W n , πn(w) =

∏m
`=1 p

Cn
` (w)

` ; equivalently, log2(πn(w)) =
∑m

`=1C
n
` (w) log2(p`).

Thus, whenever w ∈ W n is λ-typical, then |n−1 log2(πn(w)) − H(p)| ≤
Kn−1λn, where K := −∑m

`=1 log2(p`), and H(p) :=
∑m

`=1 p` log2(p`) is the
relative entropy of p. Equivalently still, for all λ-typical w ∈ W n ,

2nH(p)−Kλn ≤ πn(w) ≤ 2nH(p)+Kλn. (5.48)

To complete this proof, note that

1 =
∑

w λ-typical

πn(w) +
∑

w λ-atypical

πn(w). (5.49)

Thus, by the first inequality in (5.48),

1 ≥
∑

w λ-typical

πn(w) ≥ 2nH(p)−KλnTn(λ). (5.50)

This implies that lim supn n
−1 log2(Tn(λ)) ≤ −H(p). This is half of the

result. For the other half, we can combine (5.47) with the second inequality
in (5.48). Namely, for all ε > 0, there exists nε such that for all n ≥ nε,∑

w λ-atypical πn(w) ≤ δ + ε. Hence, by (5.49), for all n ≥ nε,∑
w λ-atypical

πn(w) ≥ 1− δ − ε. (5.51)

If we choose ε such that 1 − δ − ε > 0, then by (5.48), Tn(λ)2nH(p)+Kλn ≥
1− δ − ε, which has the desired effect. �
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6.3 The Glivenko–Cantelli Theorem

In applied data-analysis you begin with the data X1, . . . , Xn, then “plot it,”
and then ideally let the data guide your analysis.5.7 The plotting is a critical
step and is often done by way of drawing a “histogram.” A histogram is
a random discrete probability distribution; it depends on X1, . . . , Xn, and
assigns probability pn(x) to any point x ∈ R, where pn(x) is the fraction of
the data that is equal to x. Its cumulative distribution function is called the
empirical distribution function, and defined more formally as follows.

Definition 5.30 If X1, X2, . . . denotes a sequence of i.i.d. random variables
all with distribution function F , one can form the empirical distribution
function Fn by

Fn(x) :=
1

n

n∑
k=1

1{Xk≤x}, ∀x ∈ R. (5.52)

The following is due to V. I. Glivenko and F. P. Cantelli; in statisti-
cal terms, this theorem presents a uniform approximation to an unknown
distribution function F , based on a random sample from this distribution.

Theorem 5.31 (Glivenko–Cantelli [Can33, Gli33]) Almost surely,

lim
n→∞

1

n
sup

−∞<x<∞

∣∣∣Fn(x)− F (x)
∣∣∣ = 0. (5.53)

Proof Let us dispose of all measurability issues first. Since Fn and F
are right-continuous, supx∈R |Fn(x) − F (x)| = supx∈Q |Fn(x) − F (x)|. Be-
ing the supremum of denumerably many random variables, it follows that
supx |Fn(x) − F (x)| is itself a random variable. Now note that for each
fixed x, nFn(x) is a sum of n i.i.d. random variables with mean nF (x) and
variance nF (x)[1 − F (x)]. Thus, by the Kolmogorov maximal inequality

5.7See the fundamental book of Tukey [Tuk77] for this and more, as well as the history
of the subject.
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(Theorem 5.24), for any ε > 0, n ≥ 1, and x ∈ R,

P

{
max

2n≤`≤2n+1

∣∣∣F`(x)− F (x)
∣∣∣ > ε

}
≤ P

{
max

1≤`≤2n+1

∣∣∣`F`(x)− `F (x)
∣∣∣ > ε2n+1

}
≤ 2n+1F (x) [1− F (x)]

ε24n+1
≤ 1

ε22n+3
.

(5.54)

I have used the fact that for any number z ∈ [0, 1], z(1 − z) ≤ 1
4
. But F is

nondecreasing, right-continuous, F (∞) = 1, and F (−∞) = 0. Therefore, we
can always find a sequence of values x−m−1 < x−m < · · · < x−1 ≤ 0 < x1 <
x2 < · · · < xm+1 such that: (i) F (x−m) ≤ ε; (ii) F (xm) ≥ 1− ε; and (iii) for
all |j| ≤ m, supxj−1≤x<xj

|F (x)− F (xj−1)| ≤ ε. Moreover,

∞∑
n=1

P

{
max

|j|≤m+1
max

2n≤`≤2n+1

∣∣∣F`(xj)− F (xj)
∣∣∣ > ε

}
≤

∞∑
n=1

m+ 1

ε22n
<∞. (5.55)

By the Borel–Cantelli lemma, with probability one,

max
|j|≤m+1

max
2n≤`≤2n+1

∣∣∣F`(xj)− F (xj)
∣∣∣ ≤ ε,

for all but finitely many n’s.
(5.56)

But if x ∈ [xj−1, xj), then for all ` as above, F`(x)−ε ≤ F`(xj)−ε ≤ F (xj) ≤
F (x) ≤ F (xj−1)+ ε ≤ F`(xj−1)+2ε ≤ F`(x)+2ε. In other words, this shows
that with probability one,

sup
x−m≤x≤xm

max
2n≤`≤2n+1

∣∣∣F`(x)− F (x)
∣∣∣ ≤ 2ε,

for all but finitely many n’s.

(5.57)

On the other hand, if x > xm, then F (x) ≥ F (xm) ≥ 1 − ε and F`(x) ≥
F (xm) − ε ≥ 1 − 2ε. Therefore, for such values of x, |F`(x) − F (x)| ≤
|1 − F (x)| + |1 − F`(x)| ≤ 3ε. Similarly, if x < x−m, |F (x) − F`(x)| ≤
F (xm) + F`(xm) ≤ 3ε. Consequently, with probability one,

sup
x∈R

max
2n≤`≤2n+1

∣∣∣F`(x)− F (x)
∣∣∣ ≤ 3ε,

for all but finitely many n’s.
(5.58)
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Let N(ε) denote the null set off of which the above property holds. Then,
∪ε∈Q+N(ε) is a null set off of which the theorem holds. �

6.4 The Erdős Bound on Ramsey Numbers

Let us begin with a definition from graph theory.

Definition 5.32 The complete graph Km on m vertices is a collection of
m distinct vertices any two of which are connected by a unique edge. The
nth (diagonal) Ramsey number Rn is the smallest integer N such that any
bichromatic coloring of the edges of KN yields a Kn ⊆ KN whose edges are
all of the same color.

In other words, if Rn = N , then no matter how we color the edges of KN

using only the colors red and blue, then somewhere inside KN there exists
a Kn all of whose edges are either blue or red, and N is the smallest such
value.

Ramsey [Ram30] introduced these and other Ramsey numbers to discuss
ways of checking the consistency of a logical formula.5.8 As a key step in
his proofs, he proved that for all n ≥ 1, R(n) < +∞. It is intuitively clear
that as n → ∞, R(n) → ∞, and one wants to know how fast this occurs.
This question was answered in 1948 by P. Erdős using independent random
variables.

Theorem 5.33 (Erdős [Erd48]) For all n ≥ 3, Rn > 2n/2.

Remark 5.34 As far as I know, the best known bounds are An2n/2 < Rn <
n−B22n for two constants A and B. For instance, the following is likely to be
true but has no known proof:

lim
n→∞

1

n
log2(Rn) ∈ [1

2
, 2
]

exists. (5.59)

This is a conjecture of P. Erdős; see Alon and Spencer [AS91, (3), p. 241].

5.8For elementary proofs, consult Skolem [Sko33] and Erdős and Szekeres [ES35].
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Proof I will show that given any two integers N ≥ n,(
N

n

)
21−(n

2) < 1 =⇒ Rn > N. (5.60)

If so, we can then apply the above with N := b2n/2c, and note that
(

N
n

) ≤
2n2/2 ÷ n!; thus,

(
N
n

)
21−(n

2) ≤ 2n/2 ÷ n!, which is strictly less than 1 for all
n ≥ 3. Hence, it suffices to verify the preceding display.

Consider a random coloring of the edges of KN ; i.e., if EN denotes the
edges of KN , then consider an i.i.d. collection of random variables {Xe; e ∈
EN} where P{Xe = ±1} = 1

2
. Then color e red if and only if Xe = 1.

The probability that any n given vertices form a monochromatic Kn is

21−(n
2). Since there are

(
N
n

)
many choices of these n vertices, the probability

that there exist n vertices that form a monochromatic Kn is less than or

equal to
(

N
n

)
21−(n

2). In other words, there are bichromatic colorings of KN

that yield no monochromatic Kn ⊆ KN ; i.e., Rn > N . �

6.5 Monte-Carlo Integration

Suppose we were to find estimate the value of some integral Iφ :=∫
[0,1]n

φ(x) dx, where φ : Rn → R is a Lebesgue-integrable function that

is so complicated that the integral Iφ of interest is not explicitly computable.

One way to proceed is to first pick i.i.d. random variables X1, . . . , XN ,
all chosen according to the uniform measure on [0, 1]n; i.e., each Xj is sam-
pled uniformly at random from the hypercube [0, 1]n. By definition, for any
j = 1, . . . , N , E{φ(Xj)} = Iφ. Since φ(X1), . . . , φ(XN) are i.i.d. random
variables with expectation Iφ, the Kolmogorov strong law of large numbers

(Theorem 5.21) insures that for n large, N−1
∑N

j=1 φ(Xj) is close to the de-
sired integral. More precisely, that with probability one,

lim
N→∞

1

N

N∑
j=1

φ(Xj) = Iφ. (5.61)

This so-called Monte-Carlo integration works well when compared to other
numerical integration methods when the dimension n is large.
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7 Exercises

Exercise 5.1 Prove Lemma 5.9.
(Hint: For (5.6) use the Fubini–Tonelli theorem in conjunction with the fact
that for g ≥ 0 measurable,

∫
g(λ)P{X ≥ λ} dλ = E{∫ g(λ)1[0,X](λ) dλ}.)

Exercise 5.2 Prove that two real-value random variables X and Y—both
defined on the same probability space—are independent if and only if for all
x, y ∈ R, P{X ≤ x , Y ≤ y} = P{X ≤ x}P{Y ≤ y}.

Exercise 5.3 Verify the claim of Remark 5.11 by constructing three random
variables X1, X2, and X3, such that {X1, X2}, {X1, X3}, and {X2, X3} are
independent, but {X1, X2, X3} are not independent.
(Hint: Consider X1 := ±2 with probability 1

2
each, an independent X2 := ±1

with probability 1
2

each, and X3 := X1 ×X2.)

Exercise 5.4 Prove Lemma 5.14.

Exercise 5.5 Independence is a powerful property. Consider a probability
space (Ω,F,P) that is rich enough to support countably many independent
random variables X1, X2, . . . ∈ L2(P).

1. Prove that X ′
n := Xn/‖Xn‖2 is a complete orthonormal system on

L2(P); i.e., given any Y ∈ L2(P), we have Y =
∑∞

n=1 E{X ′
nY }X ′

n,
where the infinite random sum converges in L2(P).

2. Construct explicitly a probability space on which one cannot construct
infinitely many independent random variables.

Exercise 5.6 Prove the one-series theorem of Kolmogorov [Kol30]:5.9 If
X1, X2, . . . are independent mean-zero random variables taking values in R,
and if

∑
j E{X2

j } < +∞, then
∑

j Xj converges almost surely. Use this
to prove the following beautiful theorem of Steinhaus [Ste30]. The random
harmonic series converges with probability one. That is, if σ1, σ2, . . . are
i.i.d. random variables taking the values ±1 with probability 1

2
each, then∑

j j
−1σj converges almost surely.

(Hint: First, show that Sn :=
∑n

j=1Xj is a Cauchy sequence in L2(P). Then

5.9In fact, this is preceded by the stronger three-series theorem of Khintchine and Kol-
mogorov [KK25] which characterizes precisely when

∑
j Xj converges a.s.
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use the Kolmogorov maximal inequality (Theorem 5.24) along a suitable sub-
sequence.)

Exercise 5.7 In L4(P), the strong law becomes easier to prove. Suppose
X1, X2, . . . are i.i.d. random variables with mean zero and variance one,
and let Sn := X1 + · · · + Xn. If in addition ‖X1‖4 < +∞, then show that
there exists a constant A such that for all n ≥ 1, ‖Sn‖4 ≤ A

√
n. Conclude

the strong law under the given L4-assumption from this, the Borel–Cantelli
lemma, and Chebyshev’s inequality alone. (You may not use the Kolmogorov
maximal inequality in this exercise.)

Exercise 5.8 Suppose that X1, X2, . . . are i.i.d. random variables that take
values in some topological space X, and that A ∈ B(X) has the property
that P{X1 ∈ A} > 0. Then prove that with probability one, infinitely-
many of the Xn’s fall in A. Use this to make precise the following amusing
claim: If a monkey types ad infinitum and completely “at random,” then
with probability one, some portion of this infinite monkey-novel contains the
entire works of Shakespeare in exactly the way that they were written.

Exercise 5.9 Suppose that Xn is a sequence of i.i.d. exponential random
variables with parameter λ > 0 (Example 1.18). Then prove that with
probability one, lim supnXn = +∞ and lim infnXn = 0. Improve this to the
following: Almost surely,

lim sup
n→∞

Xn

lnn
=

1

λ
, lim inf

n→∞
lnXn

lnn
= −1. (5.62)

Exercise 5.10 Prove the Paley–Zygmund inequality [PZ32]: For any non-
negative random variable Y ∈ L2(P), and for any ε > 0,

P {Y > εE[Y ]} ≥ (1− ε)2{E[Y ]}2

E{Y 2} . (5.63)

Now suppose that E1, E2, . . . are events such that
∑∞

j=1 P(Ej) = +∞, and
that

γ := lim inf
n→∞

∑n
i=1

∑n
j=1 P{Ei ∩ Ej}(∑n

j=1 P{Ej}
)2 < +∞. (5.64)

Then, show that P{∑j 1Ej
= +∞} ≥ γ−1 > 0. Verify that this improves

the independence half of the Borel–Cantelli lemma (Theorem 5.23).
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(Hint: For the first part, start by writing E{Y } = E{Y ;Y ≤ a}+E{Y ;Y >
a} for a suitable number a.)

Exercise 5.11 Suppose X is uniformly distributed on [0, 1]; i.e., its distri-
bution is the Lebesgue measure on [0, 1]. Write the binary expansion of X;
i.e., X =

∑∞
j=1 2−jXj , and then show that X1, X2, . . . are i.i.d. Find their

distribution, and show that with probability one, limn n
−1Sn = 1

2
, where

Sn :=
∑n

j=1 1{Xj=1} is the total number of 1’s in the first n digits of the
binary expansion of X. This is the normal number theorem of Borel [Bor09].

Exercise 5.12 (Hard) The classical central limit theorem (Theorem 6.22
below) states the following: If X1, X2, . . . are i.i.d. random variables with
E{X1} = 0 and Var(X1) = 1, and if Sn := X1 + · · ·+Xn, then for any real
a < b,

lim
n→∞

P
{
a
√
n ≤ Sn ≤ b

√
n
}

=

∫ b

a

e−x2/2

√
2π

dx. (5.65)

Use this, without proof, to derive the following:5.10 As n→∞,

1

lnn

n∑
j=1

1{a√j≤Sj≤b
√

j}
j

P−→
∫ b

a

e−x2/2

√
2π

dx. (5.66)

We will prove this in successive steps.

1. If Zn :=
∑n

j=1 1{a√j≤Sj≤b
√

j} and C := (2π)−1/2
∫ b

a
e−x2/2 dx, then show

that as n→∞, E{Zn} ∼ C lnn. Here and throughout, an ∼ bn means
that an ÷ bn → 1.

5.10It has been shown that if, in addition, there exists a ε > 0 such that X1 ∈ L2+ε(P),
then (5.65) holds almost surely. The resulting convergence is called an almost-sure cen-
tral limit theorem (ASCLT); it was discovered independently and at the same time by
Brosamler, Fisher, and Schatte [Bro88, Fis87, Sch88].

A prefatory version of the ASCLT was anticipated by Lévy [Lév37, p. 270].
Lacey and Philipp [LP90] devised a proof of the ASCLT that is robust enough that many

of the conditions of this exercise—including the independence of the increments—can be
weakened. They also prove that, in the ASCLT, the condition X1 ∈ L2(P) suffices.

Berkes et al. [BCH98, BC01] present remarkably general families of ASCLTs. For further
references and related results see the survey article of Berkes [Ber98].
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2. Prove that when j > i,

P
{
a
√
i ≤ Si ≤ b

√
i , a

√
j ≤ Sj ≤ b

√
j
}

≤ P
{
a
√
i ≤ Si ≤ b

√
i
}

× P
{
a
√
j − b

√
i ≤ Sj−i ≤ b

√
j − a

√
i
}
.

(5.67)

3. Use the previous part to show that we can find a sequence δn → 0, such
that ∑∑

1≤i≤n
i2≤j≤n

1

ij
P
{
a
√
i ≤ Si ≤ b

√
i , a

√
j ≤ Sj ≤ b

√
j
}

≤
(

1

2
+ δn

)
(E{Zn})2 ,

(5.68)

4. Show that there exists a constant A3 such that for all n large,∑∑
1≤i≤n

i<j≤i2≤n

1

ij
P
{
a
√
i ≤ Si ≤ b

√
i , a

√
j ≤ Sj ≤ b

√
j
}

≤ A3 lnn.

(5.69)

5. (e) Use this to show that the variance of Zn ÷ lnn goes to zero as
n→∞; conclude the proof from this.

(Hint: Part (e) uses (a), (b), and (c). In part (e), use the trivial estimate,
P(E ∩ F ) ≤ P(E) for any two events E and F .)



Chapter 6

Weak Convergence

1 Introduction

Without a doubt, the central limit theorem (CLT) of de Moivre [dM33, dM38,
dM56] and Laplace [Lap10] is one of the great discoveries of nineteenth cen-
tury mathematics.6.1 To describe it, consider performing a sequence of inde-
pendent random trials, each of which can lead to either a success or failure.
Suppose also that there exists some p ∈ (0, 1) such that with probability p,
any given trial succeeds, and with probability 1−p it fails. If Tn denotes the
total number of successes in n trials, then it is easy to see that

P{Tn = k} =

(
n

k

)
pk(1− p)n−k, ∀k = 0, 1, . . . , n, (6.1)

and 0 if k 6∈ {1, . . . , n}. The de Moivre–Laplace central limit theorem gives
an asymptotic evaluation of the distribution of Tn for large n. In precise
terms, it states that for any a < b,

lim
n→∞

P

{
a <

Tn − np√
np(1− p)

≤ b

}
=

∫ b

a

e−x2/2

√
2π

dx. (6.2)

Therefore, in some sense, Tn is approximately normally distributed with pa-
rameters µ = np and σ =

√
np(1− p) (why?).

6.1For a detailed historical account of the classical central limit theorem, see
Adams [Ada74].
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The classical proof of the de Moivre–Laplace theorem is combinatorial,
and is a tedious application of the de Moivre–Stirling formula,6.2

lim
n→∞

n!

nn+ 1
2e−n

=
√

2π. (6.3)

This is in itself a simple but tedious exercise.
In this chapter we discuss the modern approach to this and a powerful

generalization that involves the notion of weak convergence.6.3

2 Weak Convergence

Definition 6.1 Let X denote a topological space, and suppose µ, µ1, µ2, . . .
are probability (or more generally finite) measures on (X,B(X)). We say that
µn converges weakly to µ—and write µn =⇒ µ—if for all bounded continuous
functions f : X → R,

lim
n→∞

∫
f dµn =

∫
f dµ. (6.4)

If Xn is an X-valued random variable with distribution µn, and if X is
an X-valued random variable with distribution µ, then we also say that
Xn converges weakly to X and write this as Xn =⇒ X. This is equiv-
alent to saying that for all bounded continuous functions f : X → R,
limn E{f(Xn)} = E{f(X)}.

The following important characterization of weak convergence on R is due
to P. Lévy.

Theorem 6.2 (Lévy [Lév37]) Let F be the distribution function of µ—a
probability measure on (R,B(R))—and Fn that of µn—also probability mea-
sures on (R,B(R)). Then µn =⇒ µ if and only if limn→∞ Fn(x) = F (x)
for all x ∈ R at which F is continuous. Equivalently, in terms of random
variables, Xn =⇒ X if and only if P{Xn ≤ x} → P{X ≤ x} for all x such
that P{X = x} = 0.

6.2This is also known as Stirling’s formula. The original formulation of Stirling’s formula
is due to A. de Moivre who showed that there exists a constant β such that lnn! =
lnβ +

(
n + 1

2

)
lnn− n + 1

12n − 1
360n3 + 1

1260n4 + · · · ; see de Moivre [dM38]. The displayed
Stirling formula (with

√
2π replaced by β) follows readily from this. The contribution of

Stirling [Sti30] was in proving the nontrivial fact that in addition β =
√

2π.
6.3Unfortunately, most nonprobabilists call this weak-* convergence; weak convergence

typically means something else.
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Remark 6.3 To see how the above may be useful to us, consider the setting
of the de Moivre–Laplace central limit theorem of (6.2), let Xn := (Tn −
np) ÷√np(1− p), X := a normal random variable with µ = 0 and σ = 1,
Fn := the distribution function of Xn, and F := the distribution function of
X. Observe that: (i) F is continuous everywhere; and (ii) (6.2) asserts that
limn(Fn(b)− Fn(a)) = F (b)− F (a). Thanks to the preceding theorem then,
(6.2) is saying that Xn =⇒ X.

Remark 6.4 At first glance, it may seem strange that if µn =⇒ µ, then
Fn → F only where F is continuous. If so, then perhaps the following simple
example will convince you that continuity is unavoidable: Let X := ±1 with
probability 1

2
each. Next let Xn(ω) = −1 if X(ω) = 1, and Xn(ω) := 1+ 1

n
if

X(ω) = 1. Then for all bounded continuous functions f , we have f(Xn) →
f(X) a.s. (in fact surely), and hence E{f(Xn)} → E{f(X)}. However,
F (1) = P{X ≤ 1} = 1, whereas Fn(1) = P{Xn ≤ 1} = 1

2
.

In order to prove the preceding theorem, we first need a simple lemma
that is really a result about nondecreasing right-continuous functions that
have left-limits everywhere. Note that any distribution function is of this
type (why?).

Lemma 6.5 The set {x ∈ R : P{X = x} > 0} is denumerable.

Thus, in this sense, Xn converges weakly toX if and only if Fn(x) → F (x)
for most values of x ∈ R.

Proof The set of the x’s in question is the same as the set of all x at which
F jumps, where F is the distribution function of X; i.e., F (x) = P{X ≤ x}.
So we will show that F can only have a denumerable number of jumps. Let
Jn denote the collection of all x such that F (x) − F (x−) ≥ n−1. Clearly,
1 = F (∞)−F (−∞) ≥∑x∈Jn

[F (x)−F (x−)] ≥ n−1#(Jn), where # denotes
cardinality. Therefore, Jn is finite, and hence ∪nJn is denumerable. �

Proof of Theorem 6.2 It should be clear that the statement about Xn =⇒
X is equivalent to the statement about µn =⇒ µ, so we need only to prove
the statement about the random variables.

Suppose first that Xn =⇒ X. For any fixed x ∈ R and ε > 0, it is not
hard to find a bounded continuous function f : R → R such that for all
y ∈ R, f(y) ≤ 1(−∞,x](y) ≤ f(y+ ε). For instance, f could be the piecewise-
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linear continuous function such that (i) for all z ≤ x, f(z) = 0; (ii) for all
z ≥ x+ ε, f(z) = 1; and (iii) for all z ∈ [x, x+ ε], f(z) = ε−1(z − x). Then,
E{f(Xn)} ≤ Fn(x) ≤ E{f(Xn + ε)}. Let n→∞ to deduce from this that

E{f(X)} ≤ lim inf
n→∞

Fn(x) ≤ lim sup
n→∞

Fn(x) ≤ E{f(X + ε)}. (6.5)

Since f(y) ≥ 1(−∞,x−ε](y), the left-most term is greater than or equal to
F (x− ε), and a similar reasoning shows that the right-most term is greater
than or equal to F (x+ ε). This tells us that if F were continuous at x, then
Fn(x) → F (x), as asserted.

For the converse, suppose that for all continuity-points x of F , Fn(x) →
F (x); we wish to prove that Xn =⇒ X. Equivalently, that for all bounded
continuous function f : R → R+ , E{f(Xn)} → E{f(X)}. (Note that f ≥ 0
here, but this is not a restriction since otherwise we would consider f+ and
f− separately.)

For any ε,N > 0, we can find an increasing collection of points 0 := x0 <
x1 < x2 < . . . ∈ R, and write x−i := −xi, such that

(i) max|i|≤N supy∈(xi,xi+1] |f(y)− f(xi)| ≤ ε;

(ii) F is continuous at xi for all i ∈ Z;

(iii) limn xn = +∞ and limn x−n = −∞.

(We need Lemma 6.5 part (ii).) By (i),∣∣∣∣∣E {f(Xn); |Xn| ≤ xN} −
N∑

j=−N

f(xj) [Fn(xj+1)− Fn(xj)]

∣∣∣∣∣
=

∣∣∣∣∣E{f(Xn); |Xn| ≤ xN} −
N∑

j=−N

f(xj)P {Xn ∈ (xj , xj+1]}
∣∣∣∣∣ ≤ ε.

(6.6)

This remains valid if we replace Xn and Fn by X and F , respectively.
Since N is a large but fixed number, limn

∑
|j|≤N f(xj) [Fn(xj+1)− Fn(xj)] =∑

|j|≤N f(xj) [F (xj+1)− F (xj)]. Therefore, the fact that ε > 0 is arbitrary
shows us that for all N > 0,

lim
n→∞

E{f(Xn); |Xn| ≤ xN} = E{f(X); |X| ≤ xN}. (6.7)
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For the remainder terms, let K := supy∈R f(y) to see that

lim sup
n→∞

E {f(Xn); |Xn| > xN} ≤ K lim sup
n→∞

P{|Xn| > xN}
≤ K lim

n→∞
[1− Fn(xN) + Fn(−xN )]

= K [1− F (xN ) + F (−xN)] .

(6.8)

But for all ε > 0, there exists N0 > 0 so large that the last term above is ≤ ε
2

for N := N0. Thus, there exists n0 so that for all n ≥ n0, E{f(Xn); |Xn| >
xN0} ≤ Kε. On the other hand, limN→∞ maxn≤n0 E{f(Xn); |Xn| > xN} ≤
K limN→∞ maxn≤n0 P{|Xn| > xN} = 0, since the maximum is over a finite
set. Thus, we can find N1 such that maxn≤n0 E{f(Xn); |Xn| > xN1} ≤ ε. Let
N2 := N0∨N1 to see that for all n ≥ 1, E{f(Xn); |Xn| > xN2} ≤ Kε. Finally,
there exists N3 > 0 such that E{f(X); |X| > xN3} ≤ Kε. Let N4 := N3∨N2,
and apply (6.7) with N := N4 to deduce that

lim sup
n→∞

|E{f(Xn)} − E{f(X)}| ≤ Kε. (6.9)

Since ε > 0 is arbitrary, this concludes our proof. �

3 Weak Convergence and Compact-Support

Functions

Definition 6.6 If X is a metric space, then Cc(X) denotes the collection of
all continuous functions f : X → R such that f has compact support ; i.e.,
there exists a compact set K such that for all x 6∈ K, f(x) = 0. In addition,
Cb(X) denotes the collection of all bounded continuous functions f : X → R.

Recall that in order to prove that µn converges weakly to µ we need to
verify that for all f ∈ Cb(X),

∫
f dµn → ∫

f dµ. Since Cc(Rk) ⊆ Cb(Rk ),
the next result can be viewed as a simplification of this task in the case that
X = Rk is a Euclidean space.6.4

Theorem 6.7 If µ, µ1, µ2, . . . are probability measures on (Rk ,B(Rk )), then
µn =⇒ µ if and only if for all f ∈ Cc(Rk ), limn

∫
f dµn =

∫
f dµ.

6.4In fact, with a little general topology, one can go far beyond Euclidean spaces.
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Proof As I mentioned a little earlier, it is easy to see that every
continuous function of compact support is bounded and continuous; i.e.,
Cc(Rk ) ⊆ Cb(Rk ). Therefore, we need only suppose that

∫
g dµn →

∫
g dµ

for all g ∈ Cc(Rk), and then prove that for all f ∈ Cb(Rk ),
∫
f dµn →

∫
f dµ.

With this goal in mind, let us choose and fix such an f ∈ Cb(Rk ); I will prove
the theorem in three successive steps. By considering f+ and f− separately,
I can assume without loss of generality that f(x) ≥ 0 for all x. This will be
done without further mention.

Step 1. The Lower Bound.
For any p > 0 choose and fix a function fp ∈ Cc(R) such that:

• For all x ∈ [−p, p]k, fp(x) = f(x).

• For all x 6∈ [−p− 1, p+ 1]k, fp(x) = 0.

• For all x ∈ Rk , fp(x) ≤ f(x).

You should check that fp exists, and for each x ∈ Rk , fp(x) ≥ 0, while
fp(x) ↑ f(x) as p ↑ ∞. It follows that

lim inf
n→∞

∫
f dµn ≥ lim

n→∞

∫
fp dµn =

∫
fp dµ. (6.10)

Let p ↑ ∞ and appeal to the dominated convergence theorem (Theorem 2.22)
to deduce half of the theorem. Namely,

lim inf
n→∞

∫
f dµn ≥

∫
f dµ. (6.11)

Step 2. A Variant.
In this step I will prove that in (6.11) we could formally replace f by the
indicator function of an open k-dimensional hypercube. More precisely, that
given any real numbers a1 < b1, . . . , ak < bk,

lim inf
n→∞

µn ((a1, b1)× · · · × (ak, bk)) ≥ µ ((a1, b1)× · · · × (ak, bk)) . (6.12)

To prove this we first find continuous functions ψm ↑ 1(a1,b1)×···×(ak ,bk), point-
wise (do it!). By definition, given any m ≥ 1, ψm ∈ Cc(Rk ), and

lim inf
n→∞

µn ((a1, b1)× · · · × (ak, bk)) ≥ lim
n→∞

∫
ψm dµn =

∫
ψm dµ. (6.13)
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Now let m ↑ ∞ and appeal to the dominated convergence theorem to deduce
(6.12).

Step 3. The Upper Bound.
For the upper bound, we use fp from Step 1 and write∫

f dµn =

∫
[−p,p]k

f dµn +

∫
Rk\[−p,p]k

f dµn

≤
∫
fp dµn + sup

z∈R
|f(z)| · [1− µn

(
[−p, p]k)] . (6.14)

Now let n→∞ and appeal to (6.12) to find that

lim sup
n→∞

∫
f dµn ≤

∫
fp dµ+ sup

z∈R
|f(z)| · [1− µ

(
(−p, p)k

)]
. (6.15)

Let p ↑ ∞ and appeal to the monotone convergence theorem (2.21) to deduce
that lim supn

∫
f dµn ≤

∫
f dµ and finish the proof. �

4 Harmonic Analysis in One Dimension

Definition 6.8 The Fourier transform of a probability measure µ on R is

µ̂(t) :=

∫ ∞

−∞
eitx µ(dx), ∀t ∈ R, (6.16)

where i :=
√−1. This still makes sense if µ is a finite measure, and even

if µ is replaced by a Lebesgue-integrable function f as follows: f̂(t) :=∫∞
−∞ eixtf(x) dx. In this case, we are identifying the Fourier transform of

the function f with that of the measure µ, where f(x) := dµ
dx

. If X is a
real-valued random variable whose distribution is some probability measure
µ, then µ̂ is also called the characteristic function of X and/or µ, and µ̂(t)
is equal to E{eitX}. This is equal to E{cos(tX)} + iE{sin(tX)} if you wish
to deal only with real integrands.6.5

Here are some of the elementary properties of characteristic functions.
You should be sure to understand the extent to which the following properties
depend on the measure µ’s being a probability measure.

6.5Unfortunately, in most other areas of mathematics, a characteristic function is our
indicator function, and our characteristic function is the Fourier transform!
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Lemma 6.9 If µ is a finite measure on (R,B(R)), then µ̂ exists, is uni-
formly continuou on R, and satisfies the following:

1. supt∈R |µ̂(t)| = µ̂(0) = µ(R), and µ̂(−t) = µ̂(t).

2. µ̂ is a nonnegative-definite function; i.e., for any z1, . . . , zn ∈ C , and
for all t1, . . . , tn ∈ R,

∑n
j=1

∑n
k=1 µ̂(tj − tk)zjzk ≥ 0.

Proof Without loss of generality, we may assume that µ is a probability
measure, for otherwise we can prove the theorem for the probability measure
ν := µ÷ µ(R), and then multiply through by µ(R).

Let X be a random variable whose distribution is µ, so that µ̂(t) =
E{exp(itX)}. This is always defined and bounded, since |eitX | ≤ 1. To prove
uniform continuity, we note that for any a, b ∈ R, |eia − eib| = |1− ei(a−b)| ≤
|a− b| ∧ 2 (why?), so that

sup
|s−t|≤δ

|µ̂(t)− µ̂(s)| ≤ sup
|s−t|≤δ

E
{∣∣1− ei(t−s)X

∣∣} ≤ E {δ|X| ∧ 2} . (6.17)

By the dominated convergence theorem (Theorem 2.22), as δ ↓ 0, this goes
to 0 and this yields uniform continuity. Part 1 is elementary, and we turn to
proving 2:

n∑
j=1

n∑
k=1

µ̂(tj − tk)zjzk =

n∑
j=1

n∑
k=1

E
{
ei(tj−tk)X

}
zjzk

= E


∣∣∣∣∣

n∑
j=1

eitjXzj

∣∣∣∣∣
2
 ,

(6.18)

which is nonnegative. �

Example 6.10[The Uniform Distribution; Example 1.17] Given two numbers
a < b, a random variable X is uniformly distributed on (a, b) if its density
function is f(x) = (b−a)−11(a,b)(x). Equivalently, the uniform distribution on
(a, b) is the same as the Lebesgue measure on (a, b) normalized to have total
mass one. (Check this for intervals first and then proceed.) Its characteristic
function is then given by

E{eitX} =
eitb − eita

it(b− a)
, ∀t ∈ R. (6.19)
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Example 6.11[The Exponential Distribution; Example 1.18] Given some
number λ > 0, a random variable X is said to have an exponential distri-
bution with parameter λ if its density function is f(x) = λe−λx1[0,∞)(x). Its
characteristic function is

E{eitX} =
λ

it− λ
, ∀t ∈ R. (6.20)

Example 6.12[The Normal Distribution; Example 1.19] Given two num-
bers µ ∈ R and σ > 0, a random variable X is said to have an nor-
mal distribution with parameters µ and σ if its density function is f(x) =
(2πσ2)−1/2 exp{−(x− µ)2/(2σ2)}. Its characteristic function is

E{eitX} = exp

(
itµ− t2σ2

2

)
, ∀t ∈ R. (6.21)

This remains valid in the degenerate case where σ = 0 (why?). You should
check that E{X} = µ and Var(X) = σ2, so that we can refer to the distri-
bution of X as normal with mean µ and variance σ2.

I mention a few “discrete” distributions as well.

Example 6.13[Discrete Distributions] Suppose thatX = xj with probability
pj (j = 1, 2, . . .), where the xj ’s are real, and pj > 0 and

∑∞
j=1 pj = 1. Then,

E{eitX} =
∞∑

j=1

eitxjpj, ∀t ∈ R. (6.22)

Here are two noteworthy consequences of this:

Example 6.14[Binomial Distributions] Given a number p ∈ (0, 1) and an
integer n ≥ 1, a random variable X is said to have the binomial distribution
with parameters n and p if P{X = k} =

(
n
k

)
pk(1− p)n−k for k = 0, 1, . . . , n

and P{X = k} = 0 otherwise. According to Example 6.13, for all t ∈ R,

E{eitX} =
(
peit + 1− p

)n
, (6.23)

thanks to the binomial formula.
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Example 6.15[Poisson Distributions] Given a number λ > 0, X is said to
have the Poisson distribution with parameter λ if P{X = k} = e−λλk/k! if
k = 0, 1, . . . and otherwise P{X = k} = 0. Its characteristic function is given
by Example 6.13, and is equal to

E{eitX} = exp
(−λ+ λeit

)
, ∀t ∈ R. (6.24)

5 The Plancherel Theorem

In this section I state and prove a modern variant of an important result of
Plancherel ([Pla10, Pla33]). Roughly speaking, it shows us how to reconstruct
a distribution from its characteristic function.

In order to state it in a convenient form, I will need to introduce a defi-
nition, as well as some notation.

Definition 6.16 Suppose f, g : R → R are measurable. Then, when defined,
the convolution f ∗ g is the function,

f ∗ g(x) :=

∫ ∞

−∞
f(x− y)g(y) dy. (6.25)

Remark 6.17 You should check that convolution is a symmetric operation;
i.e., f ∗ g = g ∗ f in the sense that one is defined if and only if the other is,
and the identity holds in such a case.

Throughout this section, we define ϕε denote the density of a mean-zero
normal random variable in R whose variance is ε2. That is,

ϕε(x) :=
e−x2/(2ε2)

ε
√

2π
, ∀x ∈ R. (6.26)

According to Example 6.12, the Fourier transform of ϕε has the following
neat form:

ϕ̂ε(t) = e−
1
2
ε2t2 , ∀t ∈ R. (6.27)
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Theorem 6.18 (The Plancherel Theorem) If µ is a finite measure on
R and f : R → R is Lebesgue-integrable, then for any ε > 0,∫ ∞

−∞
f ∗ ϕε(x)µ(dx) =

1

2π

∫ ∞

−∞
e−

1
2
ε2t2 f̂(t)µ̂(t) dt. (6.28)

Consequently, for all f ∈ Cc(R) whose Fourier transform f̂ is integrable,∫ ∞

−∞
f dµ =

1

2π

∫ ∞

−∞
f̂(t)µ̂(t) dt. (6.29)

Remark 6.19

(i) You should check that if f and g are sufficiently well-behaved, then
[f ∗ g(t) = f̂(t)ĝ(t). That is, the Fourier transform maps convolutions
into products. In particular, the Fourier transform of ψ := f ∗ ϕε is
e−

1
2
ε2t2 f̂(t). Therefore, (6.28) states that

∫
ψ dµ = (2π)−1

∫
ψ̂(t)µ̂(t) dt,

which is a little like (6.29). This is far from being an accident, but you
will have to learn about this in a text on distribution theory and/or
Fourier analysis.

(ii) Equation (6.29) is sometimes referred to as the Parseval identity,
named after Marc-Antoine Parseval des Chénes for his 1801 discovery
of a discrete version of (6.29) in the context of Fourier series.

Proof of Theorem 6.18 In order to prove (6.28), we simply integrate the
right-hand side and appeal to the Fubini–Tonelli theorem (Theorem 3.6).
Here is how:6.6

1

2π

∫ ∞

−∞
e−

1
2
ε2t2 f̂(t)µ̂(t) dt

=
1

2π

∫ ∞

−∞
e−

1
2
ε2t2
(∫ ∞

−∞
f(x)eitx dx

)(∫ ∞

−∞
e−ity µ(dy)

)
dt

=
1

2π

∫ ∞

−∞

∫ ∞

−∞

(∫ ∞

−∞
e−

1
2
ε2t2eit(x−y) dt

)
µ(dy) f(x) dx.

(6.30)

6.6Since f is integrable, all of the integrals converge absolutely.
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A direct calculation reveals that∫ ∞

−∞
e−

1
2
ε2t2eit(x−y) dt =

√
2π

ε
e−(x−y)2/(2ε2) = 2πϕε(x− y). (6.31)

(Check by completing the square!) This and another doze of the Fubini–
Tonelli theorem together yield (6.28). Equation (6.29) follows from (6.28)
and the dominated convergence theorem (Theorem 2.22) once we show the
following:6.7

lim
ε→0

sup
x∈R

|f ∗ ϕε(x)− f(x)| = 0, ∀f ∈ Cc(R). (6.32)

To show this, I first note the obvious identity, f(x) =
∫∞
−∞ f(x)ϕε(y) dy, valid

for all x ∈ R. Then, for any ε, δ > 0,

|f ∗ ϕε(x)− f(x)| ≤ sup
x∈R

∫ ∞

−∞
ϕε(x− y) |f(y)− f(x)| dy

≤ Ωf(δ)× sup
x∈R

∫
y: |y−x|≤δ

ϕε(x− y) dy

+ 2 sup
z∈R

|f(z)| · sup
x∈R

∫
y: |y−x|≥δ

ϕε(x− y) dy,

(6.33)

where Ωf is the so-called modulus of continuity of f ; i.e., Ωf(δ) := sup |f(u)−
f(v)|, and the supremum is taken over all u, v ∈ R such that |u − v| ≤ δ.
What we have done so far, and a bit of algebra, together show that

|f ∗ ϕε(x)− f(x)| ≤ Ωf(δ) + 2 sup
z∈R

|f(z)| ×
∫
|y|≥δ/ε

e−y2/2

√
2π

dy. (6.34)

Let ε→ 0, and then δ → 0, to deduce that

lim sup
ε→0

|f ∗ ϕε(x)− f(x)| ≤ lim
δ→0

Ωf(δ) = 0, (6.35)

since any f ∈ Cc(R) is uniformly continuous. This proves (6.32) and hence
the result. �

6.7This is a 1900 theorem of the nineteen-year-old L. Fejér; cf. [Tan83].
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The Plancherel theorem is one of the deep results of classical analysis,
and has a number of profound consequences. I will state a few that we will
need. The first states that the characteristic function of a finite measure
determines the measure.

Theorem 6.20 (The Uniqueness Theorem) If µ and ν are two finite
measures such that for Lebesgue-almost every t ∈ R, µ̂(t) = ν̂(t), then µ = ν.

Proof First of all, we apply Plancherel’s theorem (Theorem 6.18) and
(6.35), together, to deduce that for all f ∈ Cc(R),

∫
f dµ =

∫
f dν. We can

choose fk ∈ Cc(R) such that fk ↓ 1[a,b] (do it!). Therefore, by the monotone
convergence theorem (Theorem 2.21), µ([a, b]) = ν([a, b]).

This implies that µ and ν agree on all finite unions of disjoint closed in-
tervals of the form [a, b]. Because the collection of all such intervals generates
B(R), µ = ν on B(R). �

Another significant consequence of the Plancherel theorem is the following
convergence theorem of Glivenko and Lévy.6.8

Theorem 6.21 (Glivenko–Lévy; [Gli36, Lév25]) If µ, µ1, µ2, · · · are
all probability measures on (R,B(R)) such that for each t ∈ R, µ̂n(t) → µ̂(t),
then µn =⇒ µ.

Proof A ccording to Theorem 6.7, it suffices to show that for all f ∈ Cc(R),
limn

∫
f dµn =

∫
f dµ. But thanks to (6.34), given any δ > 0 we can choose

ε > 0 such that uniformly for all x ∈ R, |f ∗ ϕε(x) − f(x)| ≤ δ. So we can
apply the triangle inequality twice to see that for any ε > 0,∣∣∣∣∫ f dµn −

∫
f dµ

∣∣∣∣
≤ 2δ +

∣∣∣∣∫ f ∗ ϕε dµn −
∫
f ∗ ϕε dµ

∣∣∣∣
= 2δ +

1

2π

∣∣∣∣∫ ∞

−∞
f̂(t)e−

1
2
ε2t2 (µ̂n(t)− µ̂(t)) dt

∣∣∣∣ .
(6.36)

6.8As it is stated, this theorem is due to Glivenko [Gli36]. Earlier, Lévy [Lév25] had
published the following refinement that I will not prove since we will not need it: If
L(t) := limn µ̂n(t) exists and is continuous in a neighborhood of t = 0, then there exists a
probability measure µ such that L = µ̂, and µn =⇒ µ.
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The last line holds by the Plancherel theorem (Theorem 6.18). Since

f ∈ Cc(R), f̂ is uniformly bounded by
∫ |f(x)| dx <∞ (Lemma 6.9). There-

fore, thanks to the dominated convergence theorem, lim supn→∞ |
∫
f dµn −∫

f dµ| ≤ 2δ. Since δ > 0 is arbitrary, the theorem follows. �

6 The One-Dimensional Central Limit The-

orem

We are ready to state and prove the main result of this chapter, that is a
cornerstone of classical probability theory:6.9

Theorem 6.22 (The CLT) Suppose X1, X2, . . . are i.i.d. real-valued ran-
dom variables in L2(P), and assume that Var(X1) > 0. Then writing
Sn := X1 + · · ·+Xn as before, it follows that for all real a < b,

lim
n→∞

P

{
a <

Sn − E{Sn}
SD(Sn)

≤ b

}
= lim

n→∞
P

{
a <

Sn − nE{X1}√
nVar(X1)

≤ b

}

=

∫ b

a

e−x2/2

√
2π

dx.

(6.37)

Proof Let X∗
j := (Xj − E{Xj}) ÷

√
Var(Xj) and S∗n :=

∑n
j=1X

∗
j . Then,

the X∗
i ’s have mean zero and variance one. Moreover, S∗n = (Sn−nE{X1})÷√

Var(X1). In other words, we can assume without loss of generality that the
Xj’s have mean zero and variance one. This simplifies the assertion to the
following: n−1/2Sn =⇒ Z, where Z is a normal random variable with mean
zero and variance one.

Thanks to the Glivenko–Lévy convergence theorem (Theorem 6.21) and
Example 6.12, we need to prove that for all t ∈ R, limn→∞ E{eitSn/

√
n} =

e−t2/2. By Taylor’s expansion, for all x ∈ R, eix = 1+ ix− 1
2
x2 +R(x), where

R is a complex-valued function, and |R(x)| ≤ 1
6
|x|3. If |x| ≤ 1, this is a good

6.9This is, in fact, the beginning of a rich and complete theory that you can learn from
reading the works of Gnedenko and Kolmogorov [GK68], Lévy [Lév37], and Feller [Fel66].
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estimate. On the other hand, the worst estimate of all works well enough
when |x| > 1, viz., |eix−1−ix+ 1

2
x2| ≤ |eix|+1+|x|+ 1

2
x2 ≤ 1+|x|+ 1

2
x2 ≤ 7

2
x2.

Combine terms to obtain the bound:

|R(x)| ≤ 7

2

(|x|3 ∧ x2
)
. (6.38)

But by independence (Lemma 5.12) and the identical distribution of theXj’s,

E
{
eitSn/

√
n
}

=

n∏
j=1

E
{
eitXj/

√
n
}
. (6.39)

Therefore, we apply Taylor’s expansion once more, and deduce that

E
{
eitSn/

√
n
}

=

[
1 + itE

{
X1√
n

}
− t2

2
E

{
X2

1

n

}
+ E

{
R
(
it
X1√
n

)}]n

=

[
1− t2

2n
+ E

{
R
(
it
X1√
n

)}]n

.

(6.40)

The last expectation is bounded as follows:

n

∣∣∣∣E{R(it X1√
n

)}∣∣∣∣ ≤ 7

2
E

{ |X1|3
n1/2

∧X2
1

}
:= δn, (6.41)

which goes to zero by the dominated convergence theorem (Theorem 2.22).
From this we obtain the following for some sequence εn → 0:

lim
n→∞

E
{
eitSn/

√
n
}

= lim
n→∞

[
1− t2

2n
(1 + εn)

]n

= e−
1
2
t2 , (6.42)

since by Taylor expansion, for x ' 0, we have ln(1− x) ' −x (why?). This
proves the central limit theorem. �

7 The Multidimensional CLT (Optional)

Now we turn to the case of random variables in Rd . Throughout,
X,X1, X2, . . . are i.i.d. random variables that takes values in Rd , and
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Sn := X1 + · · · + Xn. Our discussion is somewhat sketchy since we have
already encountered most of the key ideas earlier on in this chapter. Through-
out this section, ‖x‖ denotes the usual Euclidean norm of a variable x ∈ Rd ;
i.e., ‖x‖2 :=

√
x2

1 + · · ·+ x2
d, for all x ∈ Rd .

Definition 6.23 The characteristic function of X is the function f(t) :=
E{exp(it ·X)} (t ∈ Rd), where “·” denotes the Euclidean inner product. If
µ is the distribution of X, then this is also written as µ̂.

Next consider the d-dimensional mean-zero normal density with covari-
ance matrix ε times the identity:

ϕε(x) :=
e−‖x‖

2/(2ε2)

(2πε2)d/2
, ∀x ∈ Rd . (6.43)

You should check that its characteristic function is

ϕ̂ε(t) = e−
1
2
ε2‖t‖2 , ∀t ∈ Rd . (6.44)

The following is the simplest analogue of the uniqueness theorem; it is an
immediate consequence of Theorem 6.21.

Theorem 6.24 (The Convergence Theorem, d ≥ 1) If µ, µ1, µ2, . . . are
probability measures on (Rd ,B(Rd)) such that µ̂n → µ̂, then µn =⇒ µ.

The proof follows the argument that we used to derive Theorem 6.21.
This leads to the following rather quickly.

Theorem 6.25 (The CLT in Rd) If X1, X2, . . . are i.i.d. random vari-
ables in Rd with E{X i

1} = µi µ ∈ Rd , and Cov(X i
1, X

j
1) := Qi,j for an

invertible (d×d) matrix Q, then n−1/2(Sn−nµ) converges weakly to a multi-
dimensional Gaussian distribution with mean vector 0 and covariance matrix
Q; i.e., for all d-dimensional hypercubes G := (a1, b1]× · · · × (ad, bd],

lim
n→∞

P

{
Sn − nµ√

n
∈ G

}
=

∫
G

e−
1
2
y′Q−1y

(2π)d/2
√

det(Q)
dy. (6.45)

The following is an important (perhaps the most important) consequence
of the development of this chapter:
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Theorem 6.26 (The Cramér–Wald Device) Xn =⇒ X if and only if
for all t ∈ Rd , t ·Xn =⇒ t ·X.

The point is that the weak convergence of the d-dimensional random variable
Xn is boiled down to that of the one-dimensional t ·Xn, but this needs to be
checked for all t ∈ Rd .

Proof Suppose Xn =⇒ X; i.e., for all bounded continuous f : Rd → R,
E{f(Xn)} → E{f(X)}. Since gt(x) := t · x is continuous, this implies also
that E{f(gt(Xn))} → E{f(gt(X))}, which is half of the result. The converse
follows from the continuity theorem: Let µn and µ denote the distributions
of Xn and X, respectively. The condition t ·Xn =⇒ t ·X is saying that for
all t ∈ Rd , µ̂n(t) → µ̂(t), and the converse follows from Theorem 6.24. �

8 Cramér’s Theorem (Optional)

In this section we use characteristic function methods to prove the following
striking theorem of Cramér [Cra36].6.10

Theorem 6.27 (Cramér’s Theorem [Cra36]) Suppose X1 and X2 are
independent real-valued random variables such that X1 + X2 is a standard
normal random variable. Then X1 and X2 are normal random variables too.

Remark 6.28 Equivalently, Cramér’s theorem states that if µ1 and µ2 are
probability measures such that µ̂1(t)µ̂2(t) = e−

1
2
t2 , then µ1 and µ2 are Gaus-

sian probability measures (why?). Note that Theorem 6.27 remains valid if
X1 +X2 is assumed to have any normal distribution (why?).

The original proof of Cramér’s theorem is quite difficult, and I will take
a different route that rests on two elementary lemmas: One from complex
analysis, and one from probability.

6.10In order to read this section you need to know Cauchy’s integral formula from under-
graduate complex analysis. Zabell [Zab95, p. 487] points out that Cramér’s theorem is
preceded by the following result of Turing [Tur34, Theorem 3]: If X1 and X2 are indepen-
dent, and both X1 and X1 + X2 are normal, then so is X2. Although this is substantially
simpler to prove than Cramér’s theorem, it was written while Turing was an undergradu-
ate who wished to apply for a Fellowship at King’s College, Cambridge. For discussions on
the connection of this result to Turing’s independent discovery of the central limit theorem
of Lindeberg [Lin22] (Exercise 6.9); see Zabell [Zab95].
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Recall that an entire function is one that is analytic on all of C .

Lemma 6.29 (The Liouville Theorem) Suppose that f : C → C is an
entire function, and there exists an integer n ≥ 0 such that

lim sup
|z|→∞

|f(z)|
|z|n < +∞. (6.46)

Then there exist constants a0, . . . , an ∈ C such that f(z) =
∑n

j=0 ajz
j .

Remark 6.30 When n = 1, condition (6.46) is equivalent to supz |f(z)| <
+∞. Hence, in this case, Lemma 6.29 is the standard form of the Liouville
theorem of complex analysis; it states that bounded entire functions are
constants. The general case is proved by means of a similar argument, as
you will see next.

Proof For any z0 ∈ C and R > 0, define γ := {z ∈ C : |z − z0| = R}, and
recall the Cauchy integral formula: For any n ≥ 0, the nth derivative f (n) is
analytic and satisfies

f (n)(z0) =
n!

2πi

∫
γ

f(z)

(z − z0)n+1
dz =

n!

2πiRn

∫ 2π

0

f
(
z0 +Reiθ

)
ei(n+1)θ

dθ. (6.47)

Since f is continuous, (6.46) tells us that there exists a constant A > 0 such
that for all R > 0 sufficiently large, and for all θ ∈ [0, 2π), |f(z0 + Reiθ)| ≤
ARn. In particular, |f (n+1)(z0)| ≤ (n + 1)!AR−1. Because this holds for all
R > 0, f (n+1)(z0) = 0 for all z0 ∈ C , whence the result. �

The second preliminary lemma is the following probabilistic one.

Lemma 6.31 If V ≥ 0 a.s., then for any a > 0,

E
{
eaV
}

= 1 + a

∫ ∞

0

eaxP{V ≥ x} dx. (6.48)

In particular, if U ≥ 0 a.s. and there exists r ≥ 1 such that for all x > 0,
P{V ≥ x} ≤ rP{U ≥ x}, then E{exp(aV )} ≤ rE{exp(aU)} for all a > 0.
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Proof Because eaV (ω) = 1 + a
∫∞
0

1{V (ω)≥x}eax dx and the integrand is
nonnegative, we can take expectations and use Fubini–Tonelli (Theorem 3.6;
even without integrability. Why?). This yields (6.48). The second assertion
is a ready corollary of the first since r ≥ 1. �

Proof of Theorem 6.27 Let µ1 and µ2 denote the distributions of X1 and
X2, respectively. Also recall that the condition that X1 +X2 is standard nor-
mal is equivalent to µ̂1(t)µ̂2(t) = exp(−1

2
t2) (Remark 6.28). When defined,

fk(z) := E{ezXk} (z ∈ C ), so that µ̂k(t) = fk(it) for all t ∈ R. You should
note that for any x ∈ R such that fk(x) is defined (and is finite), fk(x) > 0.
In particular, log fk(z) is well-defined when possible, where log denotes the
branch of the logarithm that is real on (0,∞). Our first task is to prove that
log fk is entire for k = 1, 2.

By the dominated convergence theorem (Theorem 2.22), once we prove
that for all c > 0, E{exp(c|Xk|)} < +∞, then it follows that fk is an entire
function and fk(x) > 0 for all x ∈ R (why?). I will do this for k = 1. The
case k = 2 follows analogously. Throughout, Z designates the sum X1 +X2,
which is a standard normal random variable.

Whenever X1 ≥ λ and X2 ≥ m1, it follows that Z ≥ λ−m1. Since X1 and
X2 are independent, we get P{Z ≥ λ −m1} ≥ P{X1 ≥ λ}P{X2 ≥ −m1}.
Choose and fix m1 > 0 so large that P{X2 ≥ −m1} ≥ 1

2
.6.11 This yields,

P {X1 ≥ λ} ≤ 2P {Z ≥ λ−m1} , ∀λ ∈ R. (6.49)

Similarly, we can choose m2 > 0 so large that P{X2 ≤ m2} ≥ 1
2

and obtain

P {X1 ≤ −λ} ≤ 2P {Z ≤ −λ+m2} , ∀λ ∈ R. (6.50)

Finally, let m := max(m1, m2) and combine (6.49) and (6.50) to deduce that

P {|X1| ≥ λ} ≤ 4P {|Z|+m ≥ λ} , ∀λ > 0. (6.51)

Lemma 6.31 ensures that E{exp(c|X1|)} ≤ 4ecmE{exp(c|Z|)}. But

E
{
ec|Z|} =

√
2

π

∫ ∞

0

ecw− 1
2
w2

dw ≤ 2e
1
2
c2. (6.52)

6.11The largest such −m1 is called the median of X2.
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Therefore, E{exp(c|X1|)} < +∞ for all c ∈ R. This shows that log f1 is an
entire function. Moreover, since |f1(z)| ≤ E{exp(|z| · |X1|)},

|f1(z)| ≤ 8 exp

(
|z|m+

1

2
|z|2
)
. (6.53)

In particular, log f1 satisfies (6.46) with n = 2, and this implies that f(z) =
exp(a0+a1z+a2z

2) for some a0, a1, a2 ∈ C . Since f(0) = 1, a0 = 1. Therefore,
in terms of the characteristic function µ̂1, we have

µ̂1(t) = exp(a1it− a2t
2), ∀t ∈ R. (6.54)

But (i) µ̂1(−t) = µ̂1(t) (Lemma 6.9), and (ii) |µ̂1(t)| ≥ 0. These two facts
and a few lines of calculations together show that a1 and a2 are real, and
a2 ≥ 0. Thus, X1 is normal with mean a1 and variance 2a2 (Example 6.12).
[Recall that a2 = 0 is permissible.] The normality ofX2 follows from a similar
argument. �

9 Exercises

Exercise 6.1 If µ, µ1, µ2, . . . , µn is a sequence of probability measures on
(Rd ,B(Rd)), then show that the following are characteristic functions
of probability measures: µ̂, Re µ̂, |µ̂|2, ∏n

j=1 µ̂j, and
∑n

j=1 pjµ̂j , where

p1, . . . , pn ≥ 0 and
∑n

j=1 pj = 1. Also prove that µ̂(ξ) = µ̂(−ξ). Conse-

quently, if µ is a symmetric measure (i.e., µ(−A) = µ(A) for all A ∈ B(Rd))
then µ̂ is a real function.

Exercise 6.2 If X has the probability density function f(x) := (1 − |x|)+,
then compute the characteristic function of X. Use this and the Plancherel
theorem (Theorem 6.18) to show that f itself is the characteristic function
of a probability measure. In particular, conclude that there are probability
measures that possess a real nonnegative characteristic function that vanishes
outside a compact set.

Exercise 6.3 Use the central limit theorem (Theorem 6.22) to derive (6.2).
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Exercise 6.4 Prove the following variant of the Plancherel theorem (Theo-
rem 6.18):6.12 For any a < b and all probability measures µ on (R,B(R)),

lim
ε↓0

1

2πi

∫ ∞

−∞
e−

1
2
ε2t2
(
e−ita − e−itb

t

)
µ̂(t) dt

= µ ((a, b)) +
1

2
µ({a}) +

1

2
µ({b}).

(6.55)

Exercise 6.5 Prove the law of rare events: If Xn is a binomial random
variable (Example 6.14) with parameters n and λn−1, where λ ∈ (0, n) is
fixed, then as n → ∞, Xn converges weakly to a Poisson distribution (Ex-
ample 6.15) with parameter λ.

Exercise 6.6 Suppose f is a probability density function on R; i.e., f ≥ 0
a.e., and

∫∞
−∞ f(x) dx = 1.

1. Apply (6.29) to deduce the inversion theorem: Whenever f̂ is inte-
grable, then f is continuous, and

f(x) =
1

2π

∫ ∞

−∞
e−itxf̂(t) dt, ∀x ∈ R. (6.56)

2. The density function f is said to be of positive type if f̂ ≥ 0 is integrable.
Prove that whenever f is of positive type, then for all x ∈ R, f(x) ≤
f(0). In particular, conclude that f(0) > 0.

3. If f is of positive type, then prove that g(x) := f̂(x)/(2πf(0)) is a
probability density function whose characteristic function is ĝ(t) =
f(t)/(2πf(0)).

4. Show that the characteristic function of g(x) := 1
2
e−|x| is ĝ(t) =

(2π)−1(1 + t2)−1. Conclude that f(x) := 1
π
(1 + x2)−1 is a probabil-

ity density function whose characteristic function is f̂(t) = exp(−|t|).
The function f defines the so-called Cauchy distribution.

6.12The convergence of this limit is fairly subtle. For instance, let me mention that in
general the simpler-looking

∫
limε(· · · )µ̂(t) dt does not exist. The formula of this exercise

is a variant of a calculation of Lévy [Lév37, (10), p. 38] who refers to this formula as the
formule de réciprocité of Fourier.
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Exercise 6.7 A probability measure µ on (R,B(R)) is said to be infinitely
divisible if for any n ≥ 1, there exists a probability measure ν such that
µ̂ = (ν̂)n.

1. Let X have distribution µ. Show that infinite divisibility is equivalent
to the following: For all n ≥ 1, there exist i.i.d. random variables
X1, . . . , Xn such that X has the same distribution as X1 + · · ·+Xn.

2. Prove that the normal distribution, and the Poisson distribution are
infinitely divisible. So is the probability density f(x) = π−1(1 + x2)−1,
known as the Cauchy distribution.
(Hint: For the Cauchy, use Exercise 6.6.)

3. Prove that the uniform distribution on (0, 1) is not infinitely divisible.

Exercise 6.8 It is not necessary to have identical distributions to have a
central limit theory, however the form of such a theorem is inevitably more
complicated than Theorem 6.22 as this exercise shows: Let X1, X2, . . . denote
independent random variables such that

Xj =


j, with probability 1

2j2 ,

−j, with probability 1
2j2 ,

1, with probability 1
2
− 1

4j2 ,

−1, with probability 1
2
− 1

4j2 .

(6.57)

Show that if Sn :=
∑n

j=1Xj , then (Sn − E{Sn})/Var(Sn) converges weakly

to a normal distribution with mean 0 and variance
√

2/3 (not 1).
(Hint: Consider summing the truncated variables, Yj := Xj1{|Xj |≤1}.)

Exercise 6.9 Let X1, X2, . . . denote independent L2(P)-random variables
in R, and for all n define s2

n :=
∑n

j=1 Var(Xj). In addition, suppose that
sn →∞, and that the following Lindeberg Condition holds: For all ε > 0,

lim
n→∞

1

s2
n

n∑
j=1

E
{
X2

j ; |Xj| > εsn

}
= 0. (6.58)

If Sn := X1 + · · ·+Xn, then prove the Lindeberg Central Limit Theorem (cf.
Lindeberg [Lin22]): For all a < b,

lim
n→∞

P

{
a <

Sn − E{Sn}
sn

≤ b

}
=

∫ b

a

e−x2/2

√
2π

dx. (6.59)
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Check that the variables of Exercise 6.8 do not satisfy the Lindeberg con-
dition (6.58). (Hint: Consider the truncated random variables, Xj,n :=
Xj1{|Xj |≤εsn}.)

Exercise 6.10 Let e1, . . . , ed denote the usual basis vectors of Rd ; i.e.,
e′1 := (1, 0, . . . , 0), e′2 := (0, 1, 0, . . . , 0), etc. Consider i.i.d. random variables
X1, X2, . . . such that P{X1 = ±ej} = (2d)−1. Then the random process
Sn := X1 + · · ·+Xn with S0 := 0 is the simple walk on Zd; it starts at zero
and moves to each of the neighboring sites in Zd with equal probability, and
the process continues in this way ad infinitum. Find vectors an and constants
bn such that (Sn−an)/bn converges weakly to a nontrivial limit distribution.
Compute the latter distribution.
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Chapter 7

Martingale Theory

As usual, (Ω,F,P) is the underlying probability space throughout.

1 Conditional Probabilities and Expectations

The simplest definition of conditional probabilities is the one that was handed
to us from the nineteenth century: Given any two events A and B such that
P(B) > 0, define P(A |B) := P(A ∩ B) ÷ P(B). This is the “conditional
probability of A given B,” and represents the odds of the occurance of A
given that B is known to have occurred. The corresponding “conditional
expectation” is defined as follows: If Y ∈ L1(P) and P(B) > 0, then

E{Y |B} =
1

P(B)
E{Y ;B}. (7.1)

Example 7.1 Let (X, Y ) denote a discrete random variable taking the val-
ues (x1, y1), . . . , (xn, yn) (all pairs distinct) with probabilities p1, . . . , pn (all
positive). Then, the conditional distribution of X given that we have ob-
served that Y = y1, for instance, is given by the following: P{X = x` | Y =
y1} = P{X = x`, Y = y1} ÷ P{Y = y1}. This is a probability distribution
on {x1, . . . , xn} (endowed with its power set if you want properly-defined σ-
algebras), and thus also leads to conditional expectation: For any function
h,

E{h(X) | Y = y1} =

n∑
`=1

h(x`)P{X = x` | Y = y1}. (7.2)
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For instance, in the above we have (check!):

E{X} =
n∑

`=1

x`P{X = x`}

E{X | Y = y1} =
n∑

`=1

x`P{X = x` | Y = y1}.
(7.3)

What if Y has an absolutely continuous distribution? Now the intuitive

notion that Y = y1 still makes sense. We can after all observe Y , and it must
have some value although the event {Y = y1} may have zero probability for
all nonrandom choices of y1.

Similar considerations led A. N. Kolmogorov to a much more general,
though somewhat abstract, notion of conditional expectations. To explain
Kolmogorov’s idea, let us return to the Example 7.1 above.

Example 7.2[Example 7.1; Continued] Fix a function h, and consider the
random variable ϕ(Y ) := E{h(X) | Y }, where ϕ is described by the assign-
ment ϕ(yj) = E{h(X) | Y = yj} (j = 1, . . . , n), and the latter conditional
expectation is defined in (7.2). This function ϕ has the following property
that is known as Bayes’ formula:7.1

E{h(X)} =

n∑
j=1

ϕ(yj)P{Y = yj} = E{ϕ(Y )}. (7.4)

The starting point of Kolmogorov’s idea—in this example—is the observation
that given any other function ψ,

E{ψ(Y )ϕ(Y )} =
n∑

j=1

ψ(yj)ϕ(yj)P{Y = yj}

=

n∑
j=1

ψ(yj)E{h(X);Y = yj}.
(7.5)

[To prove the last equality, you first derive it for simple functions h, then
elementary functions, and then extend, as usual, to general h.] Thus, we can

7.1Bayes’ formula was published posthumously in Bayes [Bay63]. It was discovered inde-
pendently in Laplace [Lap12] who was also responsible for popularizing the Bayes formula
among mathematicians. This was noted for instance by Poincaré [Poi12].
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rewrite this as follows:

E{ψ(Y )ϕ(Y )} = E

{
n∑

j=1

ψ(yj)h(X)1{Y =yj}

}
= E {ψ(Y )h(X)} . (7.6)

Yet another way to think of this is:

E
(
ξE{h(X) | Y }

)
= E{ξh(X)}, (7.7)

for all random variables ξ that are Borel-measurable functions of Y . That
is, you can think of the random variable E{h(X) | Y } as the projection—in
L2(P)—of h(X) onto the σ-algebra generated by Y—more precisely, onto the
linear space of all Borel-measurable functions of Y .

The preceding example suggests a way out of the mentioned difficulties
with working with conditional expectations: The right notion is that of con-
ditioning with respect to general σ-algebras.

Definition 7.3 Suppose S is a sub-σ-algebra of F, and X is an integrable
random variable. Then, the conditional expectation of X given S is defined
by the following: E{X |S} is a S-measurable random variable in L1(P), and
for all bounded S-measurable random variables ξ, E(ξE{X |S}) = E{ξX}.
In the case that S = σ(Y )—the σ-algebra generated by Y—for some random
variable Y , then E{X | σ(Y )} is also written as E{X | Y }. This makes sense
even if Y takes values in Rn for n > 1.

The following shows that our new notion of conditional expectations con-
tains the one from classical probability theory.

Remark 7.4 If B ∈ F, and if 0 < P(B) < 1, then for all Y ∈ L1(P),

E{Y | σ(B)} =

{
1

P(B)
E{Y ;B}, a.s. on B,

1
P(B{)

E{Y ;B{}, a.s. on B{.
(7.8)

where σ(B) := {?,Ω, B,B{} is the σ-algebra generated by B. More generally,
whenever B1, . . . , Bn are disjoint subsets of F with positive P-measure, then
for almost all ω,

E
{
Y
∣∣∣ σ{B1, . . . , Bn}

}
(ω) =

n∑
j=1

1Bj
(ω)

E{Y ;Bj}
P(Bj)

. (7.9)
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This is valid for all Y ∈ L1(P), and the proof involves a direct verification.
Indeed, if A ∈ {B1, . . . , Bn}, then A = Bj for some j, and therefore, we
can multiply the right-hand side of the previous display by 1A(ω) and take
expectations to obtain E{Y ;Bj} = E{Y ;A}, as needed. The general case
follows by considering finite (automatically disjoint) unions of the Bj’s.

Remark 7.5 Intuitively speaking, you should think of E{X} as the “best”
predictor of X ∈ L1(P). However, if we are aware of the (partial) information
that is contained in S, then the “best” predictor of X is E{X |S} (and not
necessarily E{X} anymore). Given this, try to convince yourself heuristically
of the following before reading further: (i) E{X | {?,Ω}} = E{X}, since
knowing the information in the trivial σ-algebra {?,Ω} amounts to knowing
that either nothing happens or something in Ω will (why?). (ii) E{X |F} =
X, since knowing F amounts to knowing everything there is to know. [The
said computations will be proved next, but you should try to understand their
meaning intuitive before reading further. In particular, convince yourselves
that knowing F is the same as knowing all F-measurable random variables
including X.]

Theorem 7.6 If S is a sub-σ-algebra of F and X ∈ L1(P) is real-valued,
then E{X |S} always exists and is unique a.s. Furthermore, conditional
expectations have the following properties:

(i) E{E(X |S)} = E{X}, E{X |F} = X, a.s., and E(X | {?,Ω}) =
E{X}, a.s.

(ii) If ξ is S-measurable, then a.s., E{ξX |S} = ξE{X |S}, and if X ≥ 0,
a.s., then with probability one, E{X |S} ≥ 0.

(iii) If X1, X2, . . . , Xn ∈ L1(P) and a1, a2, . . . , an ∈ R, then

E

{
n∑

j=1

ajXj

∣∣∣∣∣ S
}

=

n∑
j=1

ajE{Xj |S}, a.s. (7.10)

(iv) (Conditional Jensen’s inequality) If ψ : R → R is convex and if ψ(X) ∈
L1(P), then E{ψ(X) |S} ≥ ψ (E{X |S}), a.s.

(v) (Conditional Fatou’s Lemma) If X1, X2, . . . ∈ L1(P) are nonnegative
a.s., then a.s., E{lim infnXn |S} ≤ lim infn E{Xn |S}.



Section 1. Conditional Probabilities and Expectations 109

(vi) (Conditional Bounded Convergence Theorem) If X1, X2, . . . are a.s.
bounded random variables, and if limnXn exists a.s., then with proba-
bility one, E{limnXn |S} = limn E{Xn |S}.

(vii) (Conditional Monotone Convergence Theorem) If Xn ↑ X a.s. and
X ∈ L1(P), then with probability one,

E
{

lim
n→∞

Xn

∣∣∣S} = lim
n

E{Xn |S}. (7.11)

(viii) (Conditional Dominated Convergence Theorem) If supn |Xn| ∈ L1(P)
and limnXn exists a.s. then with probability one, E{limnXn |S} =
limn E{Xn |S}.

(ix) (Conditional Hölder Inequality) If for some p > 1, X ∈ Lp(P) and
Y ∈ Lq(P) where p−1 + q−1 = 1, then with probability one,∣∣E{XY ∣∣S} | ≤ [E{|X|p |S}] 1

p · [E{|Y |q |S}] 1
q . (7.12)

(x) (Conditional Minkowski Inequality) If for some p ≥ 1, X, Y ∈ Lp(P)

then with probability one, [E{|X + Y |p |S}] 1
p ≤ [E{|X|p |S}] 1

p +

[E{|Y |p |S}] 1
p .

Remark 7.7 This suggests that for almost every ω ∈ Ω, E{X |S}(ω) =∫
Ω
X(x) Pω(dx), where for each (or perhaps P-almost all) ω, Pω is a prob-

ability measure. Depending on the topological structure of Ω, this is often
the case, but we will not dwell on it. We will however see a weaker version
of such a result shortly; cf. Proposition 7.12 below.

Before proving Theorem 7.6, let us state and prove a preliminary technical
lemma.

Lemma 7.8 Suppose that Z and W are S-measurable random variables, and
that for all A ∈ S E{Z;A} ≤ E{W ;A}. Then Z ≤W , a.s. In particular, if
E{Z;A} = E{W ;A} for all A ∈ S, then Z = W , a.s.
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Proof Fix ε > 0 and consider the set Aε := {ω ∈ Ω : Z(ω) ≥ W (ω) + ε}.
Equivalently, we can write Aε = (Z −W )−1([ε,∞)), which also shows that
Aε ∈ S since Z −W is also S-measurable. Furthermore,

0 ≥ E{Z;Aε} − E{W ;Aε} = E{Z −W ;Aε} ≥ εP(Aε). (7.13)

In particular, P(Aε) = 0 for all ε > 0, and P(∪ε∈Q+Aε) = limε→0 P(Aε) = 0
(why?). Since ∪ε∈Q+Aε = {Z > W}, this shows that Z ≤ W , a.s. To prove
the second part, we apply the first to (Z,W ) in this order to obtain that
Z ≤ W , a.s. But then we can apply the first part to (W,Z) to obtain also
that W ≤ Z, a.s. Together, the last two observations complete the proof. �

Proof of Theorem 7.6 We begin our proof by showing the existence of
conditional expectations in the case that X ≥ 0, a.s. Consider

Q(A) := E{X;A} =

∫
A

X dP, ∀A ∈ S. (7.14)

Since X ∈ L1(P), it follows easily that Q is a finite measure on (Ω,S) (why?).
It is also easy to see that Q << P, so that by the Radon–Nikodým theorem
(Theorem 4.2): (a) E{X |S} := dQ

dP
exists; (b) it is in L1(Ω,S,P); (c) it is

P-a.s. unique; and (d) it is P-a.s. nonnegative since X is. Being in the said
L1-space implicitly shows that E{X |S} is S-measurable. Moreover, for all
bounded S-measurable functions ξ, E{ξX} =

∫
ξ dQ =

∫
ξE{X |S} dP =

E(ξE{X |S}). (If ξ is a simple function, this follows from (7.14); then proceed
by checking this for elementary functions, and finally take limits as usual.)
This proves the existence and uniqueness of E{X |S} when X ≥ 0, a.s. In
general, we can define E{X |S} := E{X+ |S} − E{X− |S}.

For the first portion of (ii), we first work with ξ = c1A where A ∈ S

and c ∈ R, and show that E{Xc1A |S} = c1AE{X |S}, a.s. Equivalently,
we need to show that for all B ∈ S, E{c1AX;B} = E{c1AE(X |S);B}; cf.
Lemma 7.8. But this is equivalent to E{X;A ∩ B} = E{E(X |S);A ∩ B},
which holds obviously since A∩B ∈ S. This proves (ii) in the case that ξ is
elementary. It is not hard to see how this argument works equally well when
ξ is simple. To prove the first portion of (ii) for general ξ, we can assume
without loss of generality that ξ ≥ 0, a.s., for otherwise we could consider
ξ+ and ξ− separately. Now choose simple S-measurable random variables
ξn ↑ ξ. What we have shown so far implies that for all A ∈ S, E{ξnX;A} =
E{ξnE(X |S);A}. Let n ↑ ∞ and use the monotone convergence theorem
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to deduce that for all A ∈ S, E{ξX;A} = E{ξE(X |S);A}. An appeal to
Lemma 7.8 completes the proof of the first portion of (ii).

Now we proceed to verify (i). First of all, X and E{X |S} have the same
expectation since E{X} = E{X; Ω} = E{E(X |S); Ω}. The fact that the
conditional expectation of X given the trivial σ-algebra {?,F} equals E{X}
(the unconditional expectation) follows from (7.14) for then Q(?) = 0 and
Q(Ω) = E{X} together define Q. To finish proving (i), we need to verify
that E{X |F} = X. We know that for all bounded random variables ξ,

E
{
ξ
[
E(X |F)−X

]}
= 0. (7.15)

Consider ξ := the sign of (E{X |F}−X) to deduce from the preceding display
that ‖E(X |F)−X‖1 = 0, thus proving (i).

It remains to prove (iii) with n = 2, since the remaining properties are
proved in the same manner as their unconditional counterparts were, and
the proofs only rely on (i)–(iii). Define for j = 1, 2, Qj(A) := E{Xj;A},
and Q′(A) := E{a1X1 + a2X2;A} for all A ∈ S. Then, Q′(A) = a1Q1(A) +
a2Q2(A), and for all bounded ξ,∫

ξ dQ′ = a1

∫
ξ dQ1 + a2

∫
ξ dQ2

= a1E{ξE(X1 |S)}+ a2E{ξE(X2 |S)}
= E

{
ξ
[
a1E(X1 |S) + a2E(X2 |S)

]}
.

(7.16)

On the other hand,
∫
ξ dQ′ = E{ξE(a1X1+a2X2 |S)}, and the result follows.

�

Theorem 7.6 describes some of the elementary properties of conditional
expectations. The following describes two more properties that are quite
useful.

Theorem 7.9 If X ∈ L1(P), and if F1 ⊆ F2 are both sub-σ-algebras of F,
then with probability one,

E
{

E(X |F1)
∣∣∣F2

}
= E

{
E(X |F2)

∣∣∣F1

}
= E{X |F1}. (7.17)

If X is independent of F1, then E{X |F1} = E{X}.

The preceding has implicitly relied on the following definition:
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Definition 7.10 Two σ-algebras F1 and F2 are independent if for all Ai ∈ Fi,
P(A1 ∩ A2) = P(A1)P(A2). A random variable X is independent of a σ-
algebra F if σ(X) and F are independent. That is, for all bounded measurable
functions h : R → R, and for all A ∈ F, E{h(X);A} = E{h(X)} · P(A).

Remark 7.11 Equation (7.17) is known as the towering property of con-
ditional expectations. Roughly speaking, it states that one can only use
the least amount of available information to make a good prediction on the
value of X. One can construct examples where the conditional expecta-
tion of E{X |F1} given F2 is not the same as the conditional expectation of
E{X |F2} given F1. Thus, the condition F1 ⊆ F2 is not to be taken lightly.

Proof If A ∈ F1, then A ∈ F2, and by Theorem 7.6, E{E(X |F2);A} =
E{E(X1A |F2)}. This equals E{X;A} thanks to the definition of condi-
tional expectations. Consequently, E{E(X |F2) |F1} = E{X |F1}, a.s. On
the other hand, E{X |F1} is F1- and hence F2-measurable. Thus, by Theo-
rem 7.6, E{E(X |F1) |F2} = E{X |F1} × E{1 |F2} = E{X |F1}, a.s. (Why
does the conditional expectation of 1 equal 1?) This proves the first portion.

For the final portion let me note that whenever A ∈ F1, then E{X;A} =
E{X}P(A), which is equal to E{E(X);A}. �

Conditional probabilities follow readily from conditional expectations via
the assignment,

P{A |S} := E{1A |S}, ∀A ∈ F. (7.18)

Their salient properties are not hard to derive, and are listed in the following:

Proposition 7.12 For any sub-σ-algebra S ⊆ F, the following holds:

(i) P{? |S} = 0, a.s., and for all A ∈ F, P{A |S} = 1− P{A{ |S}, a.s.

(ii) For any disjoint measurable A1, A2, . . . there exists a null set outside of
which, P{∪∞i=1Ai |S} =

∑∞
i=1 P{Ai |S}.

2 Filtrations, Semimartingales, and Stopping

Times

Definition 7.13 A stochastic process (or a random process, or a process) is
a collection of random variables. If F1 ⊆ F2 ⊆ · · · are sub-σ-algebras of F,
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then {Fi; i ≥ 1} is a filtration. A process X1, X2, . . . is adapted to a filtration
F1,F2, . . . if for every n ≥ 1, Xn is Fn-measurable.

The best way to construct such things is to start with a random process
of your choice, call it X1, X2, . . ., and defining Fn := σ(X1, . . . , Xn); i.e., Fn

is the σ-algebra generated by Xn. Clearly, Fn ⊆ Fn+1, and by definition
{Xn; n ≥ 1} is adapted to {Fn; n ≥ 1}. Suppose, in addition, that Xn ∈
L1(P) for all n ≥ 1, and think of X1, X2, . . . as a random process that evolves
in (discrete) time. Then, a sensible prediction of the value of the process at
time n+1 given the values of the process by time n is E{Xn+1 |Fn}. We say
that X := {Xn; n ≥ 1} is a martingale if this predicted value is Xn. In this
way, you should convince yourself that fair games are martingales, and in a
sense, the converse is also true.

Definition 7.14 A stochastic process X := {Xn; n ≥ 1} is a submartingale
with respect to a filtration F := {Fn; n ≥ 1} if:

(i) X is adapted to F.

(ii) Xn ∈ L1(P) for all n ≥ 1.

(iii) For each n ≥ 1, E{Xn+1 |Fn} ≥ Xn, a.s.

X is said to be a supermartingale if −X is a submartingale. It is a martingale
if it is both a sub- and a supermartingale; it is a semimartingale if it can
be written as Xn = Yn + Zn where Yn is a martingale and Zn is a bounded
variation process; i.e., Zn = Un−Vn where U1 ≤ U2 ≤ · · · and V1 ≤ V2 ≤ · · ·
are integrable, adapted processes.

Here are a few examples of martingales.

Example 7.15[Independent Sums] Suppose that a fair game is repeatedly
played, each time independently from other times. Suppose also that each
game results in ±1 dollar for the gambler. One way to model this is to let
X1, X2, . . . be i.i.d. random variables with the values ±1 with probability
one-half each. Then, the gambler’s gains, after k games, is Sk := X1 +
· · ·Xk. By independence, E{Xk |X1, . . . , Xk−1} = E{Xk} = 0. This implies
that S is a martingale with respect to the filtration F1,F2, . . ., where Fn =
σ(X1, . . . , Xn). More generally still, if Sn = X1 + · · ·+Xn where the Xj ’s are
independent (not necessarily i.i.d.) and mean-zero , then S is a martingale
with respect to F. You should check that Fn is also equal to σ(S1, . . . , Sn).



114 Chapter 7. Martingale Theory

For our second class of examples, we need a definition.

Definition 7.16 A stochastic process A1, A2, . . . is previsible with respect
to a given filtration Fn if for every n ≥ 1, An is Fn−1-measurable, where F0

is always the trivial σ-algebra.

Example 7.17[Martingale Transforms] Suppose S is a martingale with re-
spect to some filtration Fn, and consider the process Y defined as

Yn := y0 +

n∑
j=1

Aj(Sj − Sj−1), ∀n ≥ 0, (7.19)

where S0 := 0, y0 is a constant, and A is a previsible process with respect to
Fn := σ(X1, . . . , Xn) with F0 := {?,Ω} denoting the trivial σ-algebra. The
process Y is called the martingale transform of S, and we next argue that Y
is itself a martingale.

Since it is clear that Y is adapted, let us check the martingale prop-
erty: When n = 0, E{Yn+1 |Fn} = E{Y1} = y0 = Y0. When n ≥ 1,
we can write Yn+1 = Yn + An+1(Sn+1 − Sn) to see that E{Yn+1 |Fn} =
Yn + E{An+1(Sn+1 − Sn) |Fn}, a.s. But An+1 is Fn-measurable. So by The-
orem 7.6, with probability one, E{Yn+1 |Fn} = Yn + An+1E{Sn+1 − Sn |Fn},
and the last term equals 0 a.s. thanks to the martingale property of S. This
proves that Y is a martingale.

Note that the martingale transform of (7.19) has the equivalent definition,
Yn+1−Yn = An+1(Sn+1−Sn) for n ≥ 0, where Y0 := y0. You should think of
this, informally, as the discrete analogue of a stochastic differential identity
of the type, dY = AdS.

Example 7.18[Doob Martingales] Suppose Y ∈ L1(P), and let F1,F2, . . .
denote a filtration. Then, Xn := E{Y |Fn} defines a martingale (check!)
that is called a Doob martingale.

Lemma 7.19 If X is a submartingale with respect to a filtration F, then it
is also a submartingale with respect to the filtration generated by X itself.
That is, for all n, E{Xn+1 |X1, . . . , Xn} ≥ Xn, a.s.
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Proof For all n and all A ∈ B(R), X−1
n (A) ∈ Fn. Because σ(X1, . . . , Xn)

is the smallest σ-algebra that contains X−1
n (A) for all A ∈ B(R), it follows

that σ(X1, . . . , Xn) ⊆ Fn for all n. Consequently, by the towering property
of conditional expectations (Theorem 7.9), a.s.,

E{Xn+1 |X1, . . . , Xn} = E
{

E(Xn+1 |Fn)
∣∣∣X1, . . . , Xn

}
≥ E{Xn |X1, . . . , Xn} = Xn.

(7.20)

The last equality is a consequence of Theorem 7.6. �

Lemma 7.20 If X is a martingale and ψ is convex, then ψ(X) is a sub-
martingale provided that ψ(Xn) ∈ L1(P ) for all n. If X is a submartingale
and ψ is a nondecreasing convex function, and if ψ(Xn) ∈ L1(P) for all n,
then ψ(X) is a submartingale.

Proof By the conditional form of Jensen’s inequality (Theorem 7.6), with
probability one, E{ψ(Xn+1) |Fn} ≥ ψ(E{Xn+1 |Fn}). This holds for any pro-
cess X and any convex function ψ as long as ψ(Xn) ∈ L1(P).

Now if X is a martingale, then ψ(E{Xn+1 |Fn}) equals ψ(Xn), a.s., and
this proves the submartingale property of ψ(X). If in addition ψ is increasing
but X is a submartingale, then by the submartingale property of X, and by
the fact that ψ is nondecreasing, ψ(E{Xn+1 |Fn}) ≥ ψ(Xn), a.s. which is the
desired result. �

Remark 7.21 In particular, whenever X is a martingale, X+, |X|p, and
eX are submartingales provided that they are integrable at each time n. If
X is a submartingale, then X+ and eX are also submartingale, provided
integrability. However, one can construct a submartingale whose absolute
value is not a submartingale; e.g., consider Xk := − 1

k
.

Remark 7.22 An equivalent formulation of (iii) above is that for all
k, n, E{Xn+k |Fn} ≥ Xn, a.s. To prove this, we use the towering prop-
erty of conditional expectations (Theorem 7.9) as follows: Almost surely,
E{Xn+k |Fn} = E(E{Xn+k |Fn+k−1} |Fn) = E(Xn+k−1 |Fn), and proceed by
induction.

The definition of semimartingales is motivated by the following fact whose
proof is at least as interesting as the fact itself:
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Theorem 7.23 (Doob Decomposition) Any submartingale X can be
written as Xn = Yn + Zn where Y is a martingale, and Z is a nonnega-
tive adapted a.s.-increasing process with Zn ∈ L1(P) for all n. In particular,
sub- and supermartingales are semimartingales, and any semimartingale can
be written as the difference of a sub- and a supermartingale.

Proof We can write Xn = X1 +
∑n

j=2 dj where dj := Xj −Xj−1. This can
be expanded as Xn = Yn + Zn, where Y1 := X1, for all n ≥ 2, Yn := X1 +∑n

j=2(dj−E{dj |Fj−1}), and Zn :=
∑n

j=2 E{dj |Fj−1}. Since for n ≥ 2, Yn =
Yn−1 + (dn −E{dn |Fn−1}), Y is a martingale. Moreover, the properties of Z
follows from E{dj |Fj−1} ≥ 0 which is another way to write the submartingale
property. �

This is one of many decomposition theorems for semimartingales. Next is
another one, due to Krickeberg [Kri63, Satz 33, p. 131] (see also the English
translation [Kri65, Theorem 33, p. 144]). Before introducing it however, we
need a brief definition.

Definition 7.24 A stochastic process X1, X2, . . . is said to be bounded in
Lp(P) if supn ‖Xn‖p < +∞.

Theorem 7.25 (Krickeberg Decomposition) Suppose Xn is a submartin-
gale that is also bounded in L1(P). Then we can write Xn = Yn − Zn where
Yn is a martingale, and Zn is a nonnegative supermartingale.

Proof If m ≥ n, then E{Xm |Fn} ≤ E{Xm+1 |Fn}; therefore, Yn :=
limm→∞ E{Xm |Fn} exists a.s. as an increasing limit. Note that Y is an
adapted process, and Yn ≥ Xn. Moreover, thanks to the monotone conver-
gence theorem (Theorem 2.21), E{Yn} = limm E{Xm} = supm E{Xm}, which
is finite since X is bounded in L1(P). Finally, by the towering property of
conditional expectations (Theorem 7.9), and by the conditional form of the
monotone convergence theorem (Theorem 7.6),

E{Yn+1 |Fn} = lim
m→∞

E
{

E(Xm |Fn)
∣∣∣Fn+1

}
= lim

m→∞
E{Xm |Fn} = Yn, a.s.

(7.21)

This shows that Yn is a martingale, and Zn := Yn − Xn ≥ 0. On the
other hand, it is not hard to see that Zn is a supermartingale: Since Yn is a
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martingale and Xn is a submartingale,

E{Zn+1 |Fn} = E{Yn+1 |Fn} − E{Xn+1 |Fn}
≤ Yn −Xn = Zn, a.s.

(7.22)

This completes our proof. �

Remark 7.26 One of the implications of Doob’s decomposition is that any
submartingale X is bounded below by some martingale. The Krickeberg
decomposition implies a powerful converse to this: Every L1-bounded sub-
martingale is also bounded above by a martingale.

Remark 7.27 Note that in the Krickeberg decomposition, the processes Y
and Z are also bounded in L1(P). Here is a proof: E{|Yn|} ≤ E{|Xn|} +
E{Zn}. The first term is bounded in n, so it suffices to show that E{Zn}
is bounded in n. But then E{Zn} = E{Yn} − E{Xn} ≤ E{Yn} + E{|Xn|}.
Since Y is a martingale, E{Yn} = E{Y1} ≤ E{|Y1|} < ∞. This proves the
L1-boundedness of Y and Z both.

Thinking of the the index n of a process X1, X2, . . . as time, we will be
interested in a certain family of random times that are introduced next.

Definition 7.28 A stopping time (with respect to the filtration F) is a ran-
dom variable T : Ω 7→ N ∪{∞} such that for any k ∈ N , {T = k} ∈ Fk. This
is equivalent to saying that for all k ∈ N , {T ≤ k} ∈ Fk.

You should think of Fk as the total amount of information available by
time k; e.g., if we know Fk, then we know whether or not any A ∈ Fk has
occurred by time k. With this in mind, the above can be interpreted as
saying that T is a stopping time if and only if we only need to know the state
of things by time k to measurably decide whether or not T ≤ k.

Example 7.29 Nonrandom times are stopping times (check!). Next suppose
Xn is a stochastic process that is adapted to a filtration Fn. If A ∈ B(R),
then T (ω) := inf{n ≥ 1 : Xn(ω) ∈ A} is a stopping time provided that we
define inf ? := ∞. Indeed for each k ≥ 2,

{T = k} =
k−1⋂
j=1

{Xj 6∈ A} ∩ {Xk ∈ A} . (7.23)
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On the other hand, when k = 1, {T = 1} = {X1 ∈ A}. In any event, we
see that always {T = k} ∈ Fk. The random variable is the first time the
process X enters the set A. Likewise, one shows that for any k, the kth time
that X enters A is a stopping time. This example is generic in the following
sense: Suppose T is a stopping time with respect to a filtration. Then there
exists an adapted process X such that T := inf{j ≥ 1 : Xj = 1}, where
inf ? := ∞. The receipt for X is simple; namely, Xj := 1{T=j}. You should
check the remaining details.

Remark 7.30 The previous example shows that the first time that a process
enters a Borel set is a stopping time. However, not all random times are
stopping times. For instance, consider L(ω) := sup{n ≥ 1 : Xn(ω) ∈
A}, where sup? := 0, and A is a Borel set. Thus, L is the last time X
enters A, and {L = k} is the event that for all j ≥ k, Xj is not in A; i.e.,
{L = k} = ∩∞j=k{Xj 6∈ A}. This is in Fk if and only if Xk, Xk+1, . . . are all
Borel functions of X1, . . . , Xk; a property that does not generally hold. (For
example, consider the case when the Xn’s are independent.)

Lemma 7.31 If T1, T2, . . . , Tn are a finite number of stopping times, then
T1 + · · ·+ Tn, min1≤j≤n Tj, and max1≤j≤n Tj are stopping times.

Given a finite (or an a.s.-finite) stopping time T (with respect to a given
underlying filtration of course), consider

FT := {A ∈ F : ∀k ≥ 1, A ∩ {T ≤ k} ∈ Fk} . (7.24)

It should be recognized that the “T” in the notation FT is meant only to
remind us of the relation of the collection FT to the stopping time T . (It is
not the case that FT is a function of T (ω), for instance.)

Lemma 7.32 If S ≤ T (a.s.) are (a.s.-finite) stopping time, then FS ⊆ FT ;
moreover, FT is a σ-algebra. In addition, for any Y ∈ L1(P) and all n ≥ 1,
E{Y |FT}1{T=n} = E{Y |Fn}1{T=n}, a.s. Finally, if X is adapted to F,
then the random variable XT is FT -measurable, where XT (ω) is defined to be
XT (ω)(ω) for all ω ∈ Ω.

The following theorem is due to J. L. Doob [Doo53, Doo71], while the
present formulation is due to G. A. Hunt [Hun66]. It is our first important
result on semimartingales.
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Theorem 7.33 (Doob–Hunt Optional Stopping Theorem) If S and
T are a.s.-bounded stopping times such that S ≤ T a.s., and if X is a
submartingale, then with probability one, E{XT |FS} ≥ XS. If X is a su-
permartingale, then this inequality holds but in the other direction; if X is
martingale, then the inequality is replaced with equality.

Remark 7.34 This result has the following interpretation in terms of a fair
game. Suppose X1, X2, . . . are i.i.d. mean-zero random variables so that
Sn := X1 + · · ·+Xn can be thought of as the reward (or loss) at time n in a
fair game. In particular, for any n, E{Sn} = 0, which means that one cannot
expect to win at any nonrandom time n. The optional stopping theorem
states that in fact there is no winning “previsible strategy” (i.e., one that
does not depend on the “future” outcomes in order to predict what happens
“next”). In other words, when playing fair games, there is no free lunch
unless you are clairvoyant.

Proof It suffices to consider the submartingale case.
We can find a nonrandom K > 0 such that with probability one, S ≤

T ≤ K. Now the trick is to write things in terms of the “(sub-)martingale
differences,” dn := Xn −Xn−1, where we can define X0 := 0 in order to have
compact notation. Equivalently, Xn =

∑n
j=1 dj, and we can deduce from

this that a.s., XT =
∑K

j=1 dj1{j≤T}, and a similar expression holds for XS.
Therefore, for all A ∈ FS,

E{XT −XS;A} =
K∑

j=1

E
[
dj1{S<j≤T}∩A

]
=

K∑
j=1

E
[
E
{
dj1{S<j≤T}∩A

∣∣∣Fj−1

}]
=

K∑
j=1

E
[
E{dj |Fj−1}1{S<j≤T}∩A

]
,

(7.25)

since {T ≥ j} = {T ≤ j− 1}{ ∈ Fj−1, and {S < j}∩A = {S ≤ j− 1}∩A ∈
Fj−1 by the definition of FS, so that A ∩ {S < j ≤ T} ∈ Fj−1. By the defi-
nition of a submartingale, E{dj |Fj−1} ≥ 0 almost surely. This implies that
E{XT ;A} ≥ E{XS;A}, and this is equivalent to the desired result (why?).
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Our next result follows immediately from the preceding one, but is an
important fact that deserves special mention.

Corollary 7.35 If T is a stopping time with respect to a filtration F, and
if X is a submartingale (respectively, supermartingale or martingale) with
respect to F, then n 7→ XT∧n is a submartingale (respectively, supermartingale
or martingale) with respect to n 7→ FT∧n.

3 Gambler’s Ruin Formula

We are ready to take a side-tour, and use the optional stopping theorem to
have a starting look at random walks.

A random walk is simply the process that is obtained by successively
summing i.i.d. random variables (in any dimension). In symbols, we have
the following:

Definition 7.36 If X1, X2, . . . are i.i.d. random variables in Rm , then the
process n 7→ Sn is a random walk (in m dimensions) where Sn := X1 + · · ·+
Xn.

In other words, after centering, every L1-random walk is a martingale. Of
course, since martingales are defined to be one-dimensional processes here,
our next result too is one-dimensional.

Lemma 7.37 If Sn := X1+· · ·+Xn defines a random walk in one dimension,
and if X1 ∈ L1(P) has mean µ := E(X1), then n 7→ Sn − nµ is a mean-zero
martingale. If in addition X1 ∈ L2(P), µ = 0, and σ2 := Var(X1), then
n 7→ S2

n − nσ2 is a mean-zero martingale.

Nearest-neighborhood walks are a very natural class of random walks that
are defined as follows:

Definition 7.38 A random walk Sn := X1 + · · · + Xn is called a nearest-
neighborhood walk if with probability one, X1 ∈ {−1,+1}; i.e., if at all times
n = 1, 2, . . . , we have Sn = Sn−1 ± 1 almost surely.

In other words, Sn is a nearest-neighborhood walk if there exists p ∈ [0, 1]
such that P{X1 = 1} = p = 1−P{X1 = −1}. The case p = 1

2
is particularly

special and has its own name.
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Definition 7.39 When P{X1 = 1} = P{X1 = −1} = 1
2
, Sn is called the

simple walk.

We can think of a nearest-neighborhood walk Sn as the amount of money
won (lost if negative) in n independent plays of a games, where in each play
one wins and loses a dollar with probabilities p and 1− p respectively. Then
the simple walk corresponds to the fortune-process of the gambler in the case
that the game is fair.

Suppose that the gambler is playing against the house, there is a maxi-
mum house-limit of h dollars, and the gambler’s resources amount to a total
of g dollars. Then consider the first time that either the house or the gambler
stops the play; i.e.,

T := inf {j ≥ 1 : Sj = −g or h} , (7.26)

where T (ω) = inf ? := +∞ amounts to the statement that for the particular
realization ω of the game, it is played indefinitely.

Lemma 7.40 With probability one, T < +∞.

Proof I will prove this first in the case p = 1
2
. In this case, n−1/2Sn

converges weakly to a standard normal (Theorem 6.22; see also equation 6.2).
In particular, for all λ > 0,

lim
n→∞

P

{
Sn√
n
≥ λ

}
=

∫ ∞

λ

e−x2/2

√
2π

dx, (7.27)

which is positive. On the other hand, by the right-continuity of measures,

P

{
lim sup

n→∞

Sn√
n
≥ λ

}
= P

( ∞⋂
m=1

{
sup
n≥m

Sm√
m
≥ λ

})

= lim
m→∞

P

{
sup
n≥m

Sm√
m
≥ λ

}
.

(7.28)

Now if m−1/2Sm ≥ λ, then certainly supn≥m n
−1/2Sn ≥ λ. In other words,

the numerical value of the above display is greater than the display preceding
it. In particular, for all λ > 0,

P

{
lim sup

n→∞

Sn√
n
≥ λ

}
≥
∫ ∞

λ

e−x2/2

√
2π

dx > 0. (7.29)
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On the other hand, thanks to the Kolmogorov zero-one law (Theorem 5.15),
c := lim supn n

−1/2Sn is a.s. a constant; thus, c = +∞. (This is greatly
refined by the law of the iterated logarithm; cf. Theorem 7.48 below).
Therefore, when p = 1

2
there must exist a random sequence nk along which

Snk
→ ∞. Since |Sn − Sn−1| = 1, this shows that SM = h for some random

M . In particular, T ≤M <∞, a.s.
When p 6= 1

2
, we appeal to the strong law of large numbers to see that a.s.,

limn→∞ n−1Sn = 2p − 1. In the case p < 1
2
, we have shown that Sn → −∞

a.s., and when p > 1
2
, then Sn → ∞. In either case, Sn must cross g or −h

at some random but finite time. This concludes the proof. �

The “gambler’s ruin” problem asks for the probability that the gambler
is ruined in terms of the parameter p; i.e.,

Pruin(p) := P{ST = −g}. (7.30)

The following is our first important application of the optional stopping the-
orem (Corollary 7.35), and gives a formula for the ruin probability. Surpris-
ingly, the form of Pruin depends on the probability p = P{X1 = 1}.
Theorem 7.41 (Gambler’s Ruin Formula) Pruin(

1
2
) = h ÷ (g + h). On

the other hand, if p 6= 1
2
, then Pruin(p) = (ζh+g − ζg) ÷ (ζh+g − 1), with

ζ := (1− p)÷ p.

Remark 7.42 Note that limp→ 1
2
Pruin(p) = Pruin(

1
2
).

Proof I will begin with the case p = 1
2
: By the optional stopping

theorem, and by Lemma 7.37, n 7→ ST∧n is a mean-zero martingale so
that E{ST∧n} = 0 for all n. It is also a.s. bounded since supn |ST∧n| ≤
max(g, h) < ∞. Therefore, by the dominated convergence theorem (Theo-
rem 2.22), and using the fact that a.s. T < ∞ (Lemma 7.40), we deduce
that E{ST} = E{limn ST∧n} = limn = E{ST∧n} = 0. But ω 7→ ST (ω) is a
simple function so that 0 = E{ST} = −g×Pruin(

1
2
)+h× (1−Pruin(

1
2
)). Solve

to obtain the expression for the ruin probability in the case p = 1
2
.

When p 6= 1
2
, we have to only find a suitable bounded martingale and

then follow the preceding argument. But it is not hard to check that the
following is one such candidate:

ζSn is a bounded mean-one martingale, where ζ :=
1− p

p
. (7.31)
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A similar reasoning as the one used in the p = 1
2

case shows that E{ζST } = 1,
and the result follows readily from this. �

4 Doob’s Maximal Inequality, and Pointwise

Convergence

We now use the optional stopping theorem to prove our second maximal
inequality of these notes.

Theorem 7.43 (Doob’s Inequality; [Doo40]) If X1, X2, X3, . . . is a sub-
martingale, then for all λ > 0 and n ≥ 1,

P

{
max
1≤j≤n

Xj ≥ λ

}
≤ 1

λ
E

{
Xn; max

1≤j≤n
Xj ≥ λ

}
≤ 1

λ
E{X+

n },

P

{
min

1≤j≤n
Xj ≤ −λ

}
≤ 1

λ

(
E{X+

n } − E{X1}
)
,

P

{
max
1≤j≤n

|Xj| ≥ λ

}
≤ 1

λ
(2E{|Xn|} − E{X1}) .

(7.32)

Remark 7.44 The last assertion can be improved if X is a martingale, for
then |X| is a submartingale (Lemma 7.20). Hence, we apply the first equation
in (7.32) to get P{maxj≥n |Xj| ≥ λ} ≤ λ−1E{|Xn|}.

It should also be recognized that Theorem 7.43 contains an extension
of Kolmogorov’s L2-maximal inequality (Theorem 5.24). To see this let
ξ1, ξ2, . . . denote a sequence of mean-zero i.i.d. random variables with
ξ1 ∈ Lp(P) for some p > 1, and consider the random walk Sn := ξ1 + · · ·+ ξn.

In light of Lemma 7.37, n 7→ Sn is a mean-zero martingale, and so n 7→
|Sn|p is a nonnegative supermartingale for any p ≥ 1 (Lemma 7.20). To this
we apply Theorem 7.43 with Xn := |Sn|p, and deduce that for all λ > 0 and
n ≥ 1,

P

{
max
1≤j≤n

|Sj| ≥ λ

}
≤ ‖Sn‖p

p

λp
. (7.33)

In particular, if p = 2 then this and the easy fact that ‖Sn‖2
2 = n‖X1‖2

2

(Lemma 5.9) together yield Kolmogorov’s L2-maximal inequality.
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More generally still, if X is a submartingale, then so is |X|p, for any p ≥ 1
(Lemma 7.20). Consequently, for all n ≥ 1 and λ > 0, P{maxj≤nXj ≥ λ} ≤
λ−pE{Xn; maxj≤nX

p
j ≥ λ} ≤ λ−pE{Xp

n}.

Proof of Theorem 7.43 If we let inf ? := +∞, then T is a stopping time
where T := inf{j ≥ 1 : Xj ≥ λ}. Furthermore, {T ≤ n} = {maxj≤nXj ≥
λ}, and by the submartingale property,

E{X+
n } ≥ E

{
X+

n ; T ≤ n
} ≥ E {Xn; T ≤ n}

=

n∑
j=1

E {Xn; T = j} ≥
n∑

j=1

E {Xj ; T = j} . (7.34)

I have used the fact that {T = j} ∈ Fj . On the other hand, whenever T (ω) =
j, then Xj(ω) = XT (ω)(ω) ≥ λ. Thus,

∑
j≤n E{Xj ; T = j} ≥ λP{T ≤ n},

which proves the first part of (7.32).
To prove the second portion of (7.32), let τ := inf{1 ≤ j ≤ n : Xj ≤

−λ} where inf ? := ∞. By the optional stopping theorem (Theorem 7.33),
E{X1} ≤ E{Xτ∧n}. Since Xτ ≤ −λ on {τ < +∞}, we have

E{X1} ≤ E{Xτ∧n} = E{Xτ ; τ ≤ n}+ E{Xn; τ > n}
≤ −λP{τ ≤ n}+ E{X+

n }.
(7.35)

Since {τ ≤ n} = {minj≤nXj ≤ −λ}, this prove the second portion of (7.32).
Adding the two parts of (7.32) yields λP{maxj≤n |Xj | ≥ λ} ≤ 2E{X+

n } −
E{X1} ≤ 2E{|Xn|} − E{X1}. �

This implies the following fundamental theorem of J. L. Doob; it is known
as the martingale convergence theorem:

Theorem 7.45 ([Doo40]) A submartingale X converges a.s. if either (i)
X is bounded in L1(P); or (ii) X is nonpositive a.s. In either case, the
limiting random variable limnXn is finite a.s.

Proof (Isaac [Isa65]) As for the Kolmogorov strong law (Theorem 5.21),
I first prove things in the L2-case. Then I truncate down to L1(P). With
this in mind, the proof is divided into four easy steps.

Step 1. The Nonnegative L2-Bounded Case.
The easiest case is when X is nonnegative and bounded in L2(P). In this
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case, note that for all n, k ≥ 1,

‖Xn+k −Xn‖2
2 = ‖Xn+k‖2

2 + ‖Xn‖2
2 − 2E{Xn+kXn}

= ‖Xn+k‖2
2 + ‖Xn‖2

2 − 2E {E(Xn+k |Fn)Xn}
≤ ‖Xn+k‖2

2 − ‖Xn‖2
2.

(7.36)

On the other hand, by Lemma 7.20, X2 is a submartingale since Xn ≥ 0 for
all n. Therefore, ‖Xn‖2 ↑ supm ‖Xm‖2 as n increases without bound. This
and the preceding display together show that {Xn} is a Cauchy sequence in
L2(P), and so it converges in L2(P). Let X∞ to be the L2(P)-limit of Xn,
and find nk ↑ ∞ such that ‖X∞ −Xnk

‖2 ≤ 2−k. By Chebyshev’s inequality
(Corollary 2.16), for all ε > 0,

∑
k P{|X∞ −Xnk

| ≥ ε} ≤ ε−2
∑

k 4−k < +∞.
Thus, by the Borel–Cantelli lemma, limk→∞Xnk

= X∞, a.s. On the other
hand, ‖Xnk+1

−Xnk
‖1 ≤ ‖Xnk+1

−Xnk
‖2 ≤ ‖X∞−Xnk

‖2 +‖X∞−Xnk+1
‖2 ≤

2−k + 2−k+1 = 3 · 2−k. Therefore, Theorem 7.43 shows us that for any ε > 0,∑
k

P

{
max

nk≤j≤nk+1

|Xj −Xnk
| ≥ ε

}
≤ 2

ε

∞∑
k=1

‖Xnk+1
−Xnk

‖1

≤ 6

ε

∞∑
k=1

2−k < +∞.

(7.37)

I have used the fact that {Xn+j−Xn; j ≥ 0} is a submartingale for each fixed
n with respect to the filtration {Fj+n; j ≥ 0}, and that this submartingale
starts at 0. Therefore, by the Borel–Cantelli lemma,

lim
k→∞

max
nk≤j≤nk+1

|Xj −Xnk
| = 0, a.s. (7.38)

Since Xnk
→ X a.s., this shows that limm→∞Xm = X∞ a.s. Since X∞ ∈

L2(P), it is a.s. finite.
Step 2. The Nonpositive Case.

If Xn ≤ 0 is a submartingale, then eXn is a bounded nonnegative submartin-
gale (Lemma 7.20). Thanks to Step 1, limn e

Xn exists and is finite a.s.
Step 3. The Nonnegative L1-Bounded Case.

If Xn is a nonnegative submartingale that is bounded in L1(P), then thanks
to the Krickeberg decomposition (Theorem 7.25), we can write Xn = Yn−Zn

where Yn is a nonnegative martingale, and Zn is a nonnegative supermartin-
gale. By Step 2, limn Yn and limn Zn exist and are finite a.s. This shows that
limnXn exists and is finite a.s.
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Step 4. The L1-Bounded Case.
If Xn is an L1-bounded submartingale, then we can write it as Y +

n − Y −
n −

Zn, where Y is a martingale, and Z is a nonnegative supermartingale. On
the other hand, Y + and Y − are nonnegative submartingales (Lemma 7.20).
Thus, thanks to Steps 2 and 3, limn Y

+
n , limn Y

−
n , and limn Zn all exists and

are finite a.s. This completes the proof. �

5 Four Applications

Martingale theory provides us with a powerful set of analytical tools and,
as such, it is not surprising that it has made an impact on a tremendous
number of diverse mathematical problems. In keeping with the unwritten
tradition of these notes, I will mention a few applications. More examples
can be found in the exercises, as well as in the general bibliography at the
end of these notes.

5.1 Kolmogorov’s Strong Law

For our first application of martingale theory, I present the martingale proof
of the Kolmogorov strong law of large numbers (Theorem 5.21) that is due
to Doob [Doo49].

Let X1, X2, . . . be i.i.d. real random variables in L1(P), and define Sn :=
X1 + · · ·+Xn. Recall that in this case, limn n

−1Sn = E{X1}, a.s.
Let Fn denote the σ-algebra generated by {Sn, Sn+1, Sn+2, . . .}, and note

that the time-reversed Fn’s are a filtration; i.e., F1 ⊇ F2 ⊇ · · · . The following
states that n−1Sn is a time-reversed martingale with respect to this time-
reversed filtration.

Lemma 7.46 (Doob [Doo49]) For all n ≥ 1, E{X1 |Fn} = 1
n
Sn, a.s.

Proof I first show that

E{X1 |Sn} =
1

n
Sn, a.s. (7.39)

To do this I prove that

E{Xk |Sn} = E{X1 |Sn}, a.s., ∀k = 1, . . . , n. (7.40)
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This implies (7.39), since we can sum the above from k = 1 to n to deduce
that almost surely,

nE{X1 |Sn} = E

{
n∑

k=1

Xk

∣∣∣∣∣Sn

}
= E{Sn |Sn} = Sn. (7.41)

Thus, it suffices to prove (7.40). This follows from an “exchangeability argu-
ment.” Namely, that the distribution of the random variable (X1, . . . , Xn) is
the same as that of (Xπ(1), . . . , Xπ(n)) for any permutation π of {1, . . . , n}.7.2
The said “exchangeability” implies that for any bounded measurable func-
tion g, and for all k ≤ n, E{X1g(Sn)} = E{Xkg(Sn)} (why?). Equa-
tion (7.40), and hence (7.39), follows immediately from this and the defi-
nition of conditional expectations. We conclude our proof by showing that
E{X1 |Fn} = E{X1 |Sn}, a.s. Since Fn = σ{Sn, Xn+1, Xn+2, . . .} (why?), it
suffices to show that for all finite integers k, and all B0, B1, . . . , Bk ∈ B(R),

E

{
E(X1 |Fn)

k∏
`=0

1{Sn∈B0,Xn+1∈B1,...,Xn+k∈Bk}

}

= E

{
E(X1 |Sn)

k∏
`=0

1{Sn∈B0,Xn+1∈B1,...,Xn+k∈Bk}

}
.

(7.42)

Indeed, this and a monotone class argument together show that for all A ∈
Fn, E{E(X1 |Fn);A} = E{E(X1 |Sn);A}; i.e., E{X1 |Fn} = E{X1 |Sn}, a.s.
This would then complete our proof.

Since the product in (7.42) is Fn-measurable. Moreover, the left-hand
side is equal to

E

{
X1

k∏
`=0

1{Sn∈B0,Xn+1∈B1,...,Xn+k∈Bk}

}

= E {X1;Sn ∈ B0} × E

{
k∏

`=0

1{Xn+1∈B1,...,Xn+k∈Bk}

}
,

(7.43)

7.2For example, you will need to show that for all bounded measurable functions φ of
two variables, E{φ(X1, X2)} = E{φ(X2, X1)}. This is essentially obvious if φ(x, y) =
φ1(x)φ2(y), since E{φ1(X1)φ2(X2)} =

∫
φ1 dµ · ∫ φ2 dµ, where µ is the distribution of X1

(equivalently, that of X2). Then proceed by appealing to a monotone-class argument.
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thanks to the independence of {X1, · · · , Xn} and σ{Xn+1, Xn+2, . . .}. A sim-
ilar argument shows that the right-hand side of (7.42) is equal to the same
number (check this!). This concludes our proof. �

Kolmogorov’s strong law of large numbers follows at once from the previ-
ous lemma used in conjunction with the Kolmogorov zero-one law (The-
orem 5.15), and the following convergence theorem for Doob-type time-
reversed martingales. [Recall that a Doob martingale is of the form E{f |An}
where f ∈ L1(P), and An is a filtration.]

Theorem 7.47 (Doob [Doo40]) If Y ∈ L1(P) and Fn is any time-reversed
filtration, then Zn := E{Y |Fn} converges almost surely and in L1(P) to
E{Y |F∞} where F∞ := ∩nFn.

Proof First of all, we note that since Fn ⊆ Fn−1, the process Z is a
time-reversed Doob-type martingale in the sense that Zn is Fn-measurable,
and E{Zn−1 |Fn} = Zn, a.s. In particular, the process {Z−n;n = 1, 2, · · · }
is an L1-bounded martingale indexed by −N := {−1,−2, · · · }. Thanks to
Theorem 7.45, Z∞ := limn Zn exists and is finite a.s. This defines Z∞(ω) for
almost all ω. We can extend Z∞ to a function defined for all ω in a number
of ways. The quickest way is to redefine Z∞(ω) := lim supn Zn(ω) for all
ω ∈ Ω. In this way, Z∞ is F∞-measurable.

Next we prove L1-convergence. If the random variable Y is bounded a.s.,
then the L1-convergence of Zn to Z∞ follows from the bounded convergence
theorem (Theorem 2.19).

If Y is not bounded, then for each ε > 0 we can find a bounded Y ε such
that ‖Y − Y ε‖1 ≤ ε. Let Zε

n := E{Y ε |Fn} and note that Zε
∞ := limn Z

ε
n

exists a.s. and in L1(P). On the other hand,

‖Zn − Z∞‖1 ≤ ‖Zn − Zε
n‖1 + ‖Zε

n − Zε
∞‖1 + ‖Zε

∞ − Z∞‖1. (7.44)

We estimate each term separately. As for the first term, ‖Zn − Zε
n‖1 =

E{|E(Y − Y ε |Fn)|}. Thanks to the conditional Jensen’s inequality (Theo-
rem 7.6), ‖Zn − Zε

n‖1 ≤ E{E(|Y − Y ε| |Fn)}, which equals E{|Y − Y ε|} =
‖Y − Y ε‖1 ≤ ε thanks to (i) of Theorem 7.6. This inequality can be
used in conjunction with Fatou’s lemma (Theorem 2.20) to show that
‖Z∞ − Zε

∞‖1 ≤ lim infn→∞ ‖Zn − Zε
n‖1 ≤ ε. Thus, we have shown that

lim supn ‖Zn − Z∞‖1 ≤ 2ε for all ε > 0. This proves the L1-convergence.
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In order to show that Z∞ = E{Y |F∞} a.s., we can note that for all
A ∈ F∞, E{Y ;A} = E{Zn;A}. This follows because Fn contains F∞. Then
the L1-convergence of Zn to Z∞ proves that E{Y ;A} = E{Z∞;A} for all
A ∈ F∞. This verifies that Z∞ = E{Y |F∞} a.s., since Z∞ is F∞-measurable.
�

5.2 The Khintchine LIL

Suppose X1, X2, . . . are i.i.d. random variables taking the value ±1 with
probability 1

2
each. Then, by the Kolmogorov strong law (Theorem 5.21),

limn→∞ 1
n
Sn = 0 where Sn := X1 + · · ·+Xn is the partial sum process based

on the Xn’s. This problem was heavily popularized in the context of the
normal number theorem of Borel [Bor09]; cf. Exercise 5.11.

One might then ask about the correct asymptotic size of Sn. An appli-
cation of the central limit theorem shows that as n→∞, n−1/2Sn converges
weakly to a standard Gaussian (i.e., where the parameters µ and σ2 are 0 and
1, respectively). However, this is not saying much about the random variables
Sn so much as their distributions. Hausdorff [?] proved that n1/2 is roughly
the correct order of magnitude; he did this by showing that for all ρ < 1

2
,

Sn = o(n−ρ) almost surely. This was refined by Hardy and Littlewood [?]
who showed that |Sn| = O((n lnn)−1/2) almost surely, and later by Khint-
chine [?] who showed that |Sn| = O((n ln lnn)−1/2) almost surely.7.3Finally,
Khintchine [Khi24] showed the following law of the iterated logarithm (LIL):

lim sup
n→∞

Sn√
2n ln lnn

= − lim inf
n→∞

Sn√
2n ln lnn

= 1, a.s. (7.45)

Two decades later, Hartman and Wintner [HW41] derived a highly nontrivial
extension of this LIL and settled an old conjecture of A. N. Kolmogorov by
proving that Khintchine’s LIL holds quite generally. Namely, they proved
the following result.

Theorem 7.48 ( The LIL; Hartman and Wintner [HW41]) If X1, X2, . . .
are i.i.d. random variables in L2(P), then

lim sup
n→∞

Sn − E{Sn}√
2n ln lnn

= ‖X1‖2, a.s. (7.46)

7.3I have used the following “little-o/big-O” notation invented in 1894 by the number-
theorist P. Bachmann: sn = o(an) iff limn a−1

n sn = 0; sn = O(an) iff lim supn a−1
n sn <

+∞.
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At this level of generality, there are no simple-to-describe proofs of this
fact. However, the LIL is not exceedingly difficult to understand in the case
that the X’s are Gaussian random variables.

Proof of Theorem 7.48 for Gaussian Increments Without loss of
generality, we may assume that E{X1} = 0 and E{X2

1} = 1, for other-
wise we can consider the random variables X?

` := (X` − E{X`}) ÷ ‖X`‖2

(why?) together with their partial sums S?
n := X?

1 + · · · + X?
n. In other

words, it suffices to assume that Xi’s are standard Gaussians. With this in
mind, the proof is divided into a few easy steps. For simplicity, I will write
Λ := limm Sm ÷√

2m ln lnm; thanks to the Kolmogorov 0–1 law, Λ is a.s. a
constant. So out task is to show that Λ = 1.

Step 1. A Large Deviations Estimate.
Keeping in mind that X1, X2, . . . are i.i.d. standard Gaussians, we wish to
show in this first step that for all integers n ≥ 1 and all real numbers t > 0,

P

{
max
1≤j≤n

Sj ≥ nt

}
≤ e−

1
2
nt2 . (7.47)

We start by reciting without proof a calculation that you should check your-
self: For all t > 0,

E
{
etX1

}
= e

1
2
t2 . (7.48)

Consequently, if maxj≤n Sj is replaced by Sn, (7.47) follows from Exercise 2.5.

Next let us fix a t > 0 and define

Mn := exp

(
tSn − t2n

2

)
. (7.49)

Let Fn denote the filtration generated by X1, . . . , Xn, and note that Mn+1 =
Mn exp(tXn+1 − 1

2
t2). Thus,

E {Mn+1 |Fn} = MnE

{
exp

(
tXn+1 − t2

2

) ∣∣∣∣Fn

}
= MnE

{
exp

(
tXn+1 − t2

2

)}
, a.s.

(7.50)



Section 5. Four Applications 131

The first equality follows from the fact that Mn is Fn-measurable, and the
second from the fact thatXn+1 is independent of Fn. This and (7.48) together
show that Mn is a nonnegative mean-one martingale. Moreover,

P

{
max
1≤j≤n

Sj ≥ nt

}
≤ P

{
∃j ≤ n : tSj − jt2

2
≥ nt2

2

}
= P

{
max
1≤j≤n

Mj ≥ e
1
2
nt2
}
.

(7.51)

Doob’s maximal inequality (Theorem 7.43) then implies (7.47).
Step 2. The Upper Bound.

Let θ > 1 be fixed, and define θk := bθkc (k = 1, 2, . . .). We can apply (7.47)
with n := θk and t :=

√
2cn−1 ln lnn to see that for all c > 1 and all K

sufficiently large,∑
k≥K

P

{
max

1≤j≤θk

Sj ≥
√

2cθk ln ln θk

}
≤
∑
k≥K

(ln θk)
−c < +∞. (7.52)

Thanks to the Borel–Cantelli lemma (Theorem 5.23), with probability one
there exists a random variable k0 such that for all k ≥ k0, maxj≤θk

Sj ≤√
2cθk ln ln θk. For all m larger than θk0 , we can find k ≥ k0 such that

θk ≤ m ≤ θk+1. Thus,

Sm ≤ max
j≤θk+1

Sj ≤
√

2cθk+1 ln ln θk+1 ≤ Θm

√
2cθm ln lnm, (7.53)

where Θm → 1 as m → ∞. In other words, Λ ≤ √
cθ for all c, θ > 1,which

shows that Λ ≤ 1. This is one-half of the LIL in the case of standard
Gaussian increments. Moreover, by also applying the above to the Gaussian
partial-sum process (−Sn), we obtain

lim sup
m→∞

|Sm|√
2m ln lnm

≤ 1. (7.54)

Step 3. A Lower Estimate.
I first prove the following bound: There exists a constant C > 0 such that
for all λ sufficiently large,

P {X1 ≥ λ} ≥ Cλ−1e−
1
2
λ2

. (7.55)
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Indeed by the L’Hôpital rule of calculus,7.4

P {X1 ≥ λ} =

∫ ∞

λ

e−
1
2
x2

√
2π

dx ∼ 1

λ
√

2π
e−

1
2
λ2

, as λ→∞, (7.56)

where f(λ) ∼ g(λ) means that limλ→∞ f(λ) ÷ g(λ) = 1. Equation (7.55)
readily follows from this.

Step 4. The Lower Bound.
Once more fix some θ > 1, c ∈ (0, 1), and define θk := bθkc. Consider the
events

Ek :=
{
Sθk+1

− Sθk
≥
√

2c(θk+1 − θk) ln ln θk

}
. (7.57)

Since Ek depends on Xθk+1, . . . , Xθk+1
, it follows that E1, E2, . . . are indepen-

dent events. Moreover, since Sm/
√
m has a standard Gaussian distribution

for any m,

P(Ek) = P
{
Sθk+1−θk

≥
√

2c(θk+1 − θk) ln ln θk

}
= P

{
X1 ≥

√
2c ln ln θk

}
≥ C√

2c ln ln θk(ln θk)c
.

(7.58)

The last inequality holds for all k large, thanks to (7.55). Therefore, for any
θ > 1 and c ∈ (0, 1),

∑
k P(Ek) = +∞. By the second (independent) part of

the Borel–Cantelli Lemma (Theorem 5.23), a.s. infinitely many of the Ek’s
occur; more precisely, almost all ω ∈ Ω is in infinitely many of the Ek’s.
Thus,

lim sup
k→∞

Sθk+1
− Sθk√

2c(θk+1 − θk) ln ln θk

≥ 1, a.s. (7.59)

Since θk+1 − θk ∼ θk+1(1− θ−1),

lim sup
k→∞

Sθk+1
− Sθk√

2θk+1 ln ln θk

≥
√
c

(
1− 1

θ

)
, a.s. (7.60)

7.4Much more is known. For instance, Laplace [Lap05, pp. 490–493] derived the following
remarkable continued fraction expansion:

P {X1 ≥ λ} =
e−

1
2λ2

λ
√

2π
÷
[
1 + λ2 ÷

(
1 + 2λ2 ÷

{
1 + 3λ2 ÷ · · ·

})]
, ∀λ > 0.
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Thanks to this, (7.54), and the fact that θk+1 ∼ θ · θk, we can deduce the
following:

Λ ≥ lim sup
k→∞

Sθk+1√
2θk+1 ln ln θk+1

= lim sup
k→∞

Sθk+1√
2θk+1 ln ln θk

≥ lim sup
k→∞

Sθk+1
− Sθk√

2θk+1 ln ln θk

− lim sup
k→∞

|Sθk
|√

2θk+1 ln ln θk

≥
√
c

(
1− 1

θ

)
−
√

1

θ
, a.s.

(7.61)

Since this is true for all c, θ > 1, we see that Λ ≥ 1, as was to be proved. �

5.3 The Lebesgue Differentiation Theorem

Given a continuous function f : R → R,

lim
δ↓0

1

δ

∫ ω+δ

ω

f(y) dy = f(ω), (7.62)

uniformly for all ω in any given compact set. The proof is not too difficult:
Suppose we are interested in ω ∈ [0, 1] to be concrete. Then, for any ε > 0,
there exists δ ∈ (0, 1) such that whenever ω, y ∈ [0, 1 + δ] satisfy |ω− y| ≤ δ,
then |f(ω)− f(y)| ≤ ε. Consequently,∣∣∣∣1δ

∫ ω+δ

ω

f(y) dy − f(ω)

∣∣∣∣ ≤ 1

δ

∫ ω+δ

ω

|f(y)− f(ω)| dy ≤ ε. (7.63)

This verifies (7.62). There is a surprising extension of this, due to
H. Lebesgue, that holds for all integrable functions.7.5

Theorem 7.49 (Lebesgue Differentiation) Given the Borel–Steinhaus
probability space ([0, 1),B([0, 1)),P), if f ∈ L1(P), then (7.62) holds for
Lebesgue almost all ω ∈ [0, 1).

7.5This is also known as the Lebesgue density theorem. In rough terms, it states that
there are many functions that are a.e.-derivatives: At least one for each element of L1(dx).
There is an interesting counterpart to this that states that “most” continuous functions
are nowhere-differentiable. See Banach [Ban31] and Mazurkiewicz [Maz31].
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Just as we did for the Kolmogorov strong law (Theorem 5.21) and Doob’s
martingale convergence theorem (Theorem 7.45) we need a maximal inequal-
ity, this time for the following function Mf that is known as the Hardy-
Littlewood maximal function; cf. Hardy and Littlewood [HL30, Theorem 17].
Extend f periodically to a function on [0, 2), and define,

Mf(ω) := sup
δ∈(0,1)

1

δ

∫ ω+δ

ω

|f(y)| dy, ∀ω ∈ [0, 1). (7.64)

Theorem 7.50 For all λ > 0, p ≥ 1, and f ∈ Lp(P),

P {Mf ≥ λ} ≤
(

4

λ

)p

‖f‖p. (7.65)

I first prove the Lebesgue differentiation theorem assuming the preceding
maximal function inequality. We will then verify Theorem 7.50.

Proof of Theorem 7.49 For notational convenience, let me first define the
“averaging operators” Aδ as follows:

Aδ(f)(ω) = Aδf(ω) :=
1

δ

∫ ω+δ

ω

f(y) dy, ∀ω ∈ [0, 1), f ∈ L1(P). (7.66)

Thus, we have the following pointwise equality : Mf = supδ∈(0,1)Aδ(|f |).
We have already seen that for any continuous function g : [0, 1) → R

(extended periodically to [0, 2)), limδ↓0Aδg = g, uniformly. On the other
hand, continuous functions are dense in L1(P) (Exercise 2.6). Therefore, for
every n ≥ 1, we can find a continuous function gn such that ‖gn−f‖1 ≤ n−1.
With this in mind, we can note that thanks to the triangle inequality, the
following inequality holds pointwise (i.e., for every ω).

lim sup
δ↓0

|Aδf − f | ≤ lim
δ↓0

|Aδgn − gn|+ lim sup
δ↓0

|Aδgn −Aδf |

+ |gn − f |
= lim sup

δ↓0
|Aδgn −Aδf |+ |gn − f | .

(7.67)
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Consequently, if the left-hand side were greater than λ, then one of the two
terms on the right-most side must be at least λ/2 (triangle inequality); i.e.,

P

{
lim sup

δ↓0
|Aδf − f | ≥ λ

}
≤ P

{
lim sup

δ↓0
|Aδgn −Aδf | ≥ λ

2

}
+ P

{
|gn − f | ≥ λ

2

}
.

(7.68)

Because of the inequality |Aδgn − Aδf | ≤ Aδ(|gn − f |), Theorem 7.50
(with p = 1) shows that the first term in the right-hand side of (7.68) is
bounded above by 8λ−1‖gn − f‖1 ≤ 8λ−1n−1. We can also apply Cheby-
shev’s inequality (Corollary 2.16) to deduce that the second term is at most
2λ−1‖gn − f‖1 ≤ 2λ−1n−1. In other words, the left-hand side of (7.68) is at
most 10λ−1n−1 for all n. Since the left-hand side of (7.68) is independent of
n, it must equal zero for all λ > 0. This proves the Lebesgue differentiation
theorem (why?). �

Proof of Theorem 7.50 By replacing f with |f |, we can assume without
any loss in generality that f ≥ 0. Now consider F0

n that is defined as the
collection of all dyadic intervals of the form D(j;n) := [j2−n, (j + 1)2−n)
where j = 0, . . . , 2n − 1 and n ≥ 1, and define Fn to be the σ-algebra
generated by F0

n. Since every element of F0
n is a union of two of the elements

of F0
n+1, it follows that Fn ⊆ Fn+1; i.e., Fn is a filtration.
Next, let us view the function f as a random variable, and compute

E{f |Fn} by using Remark 7.4. It follows that for almost all ω ∈ [0, 1), if
ω ∈ D(j;n), then E{f |Fn} equals E{f |D(j;n)} in the classical sense; i.e.,
for almost all ω ∈ [0, 1),

E{f |Fn}(ω) =

2n−1∑
j=0

1D(j;n)(ω)
1

P(D(j;n))

∫
D(j;n)

f(y) dy

=
2n−1∑
j=0

1D(j;n)(ω)2n

∫
D(j;n)

f(y) dy.

(7.69)

If δ ∈ (0, 1), then there exists n ≥ 0 such that 2−n−1 ≤ δ ≤ 2−n. For this
value of n, we can find j ∈ {0, . . . , 2n − 1} such that ω ∈ D(j;n). There are
two cases to consider:
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Case 1. If j is even, then there we can find a unique k ∈ {0, . . . , 2n−1 − 1}
such that j = 2k and k2−(n−1) = j2−n ≤ ω+ δ < (j+1)2−n ≤ (k+1)2−(n−1).
In other words, in this case [ω, ω + δ] ⊆ D(k;n − 1) and ω ∈ D(j;n) =
[k2−(n−1), (k + 1

2
)2−(n−1)). Since f ≥ 0, we have a.s.,

2n−1∑
j=0

j even

∫ ω+δ

ω

f(y) dy · 1D(j;n)(ω)

≤
2n−1−1∑

k=0

∫
D(k;n−1)

f(y) dy · 1[k2−(n−1),(k+ 1
2
)2−(n−1))(ω).

(7.70)

When n = 0 or n = 1, the above holds tautologically if we define F−1 :=
F0 := {?,Ω}. This is because E{f | {?,Ω}} =

∫ 1

0
f(y) dy and f is nonnega-

tive. (Note that {Fn; n ≥ −1} is still a filtration.)

Case 2. If j is odd, then there we can find k ∈ {0, . . . , 2n−1 − 1} such that
j = 2k + 1 and k2−(n−1) ≤ j2−n ≤ ω + δ < (j + 1)2−n = (k + 1)2−(n−1). In
other words, in this case, ω is in [(k+ 1

2
)2−(n−1), (k+1)2−n), and [ω, ω+ δ] ⊆

D(k;n− 1). Consequently, with probability one,

2n−1∑
j=0

j odd

∫ ω+δ

ω

f(y) dy · 1D(j;n)(ω)

≤
2n−1−1∑

k=0

∫
D(k;n−1)

f(y) dy · 1[(k+ 1
2
)2−(n−1) ,(k+1)2−n)(ω).

(7.71)

We can add (7.70) and (7.71), and appeal to (7.69), to deduce that for
almost all ω ∈ [0, 1),

1

δ

∫ ω+δ

ω

f(y) dy ≤ 1

δ

2n−1−1∑
k=0

∫
D(k;n−1)

f(y) dy · 1D(k;n−1)(ω)

=
2−n+1

δ
E{f |Fn−1} ≤ 4E{f |Fn−1},

(7.72)

because δ ≥ 2−n−1. In particular, we can take the supremum over all n ≥ 0
(equivalently, all δ ∈ (0, 1)) to see that a.s., Mf ≤ 4 supn≥0Xn where X
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is the Doob martingale Xn−1 := E{f |Fn−1}. The theorem follows from
applying Doob’s maximal inequality (Theorem 7.43) to the submartingale
Xp

n−1; cf. Lemma 7.20. �

Let me mention also the following corollary of Theorem 7.50 that is es-
sentially due to Hardy and Littlewood [HL30, Theorem 17]. This result has
a number of interesting consequences in real and harmonic analysis, but this
is a discussion that is better suited elsewhere.

Corollary 7.51 If p > 1 and f ∈ Lp(P), then∫ 1

0

|Mf(t)|p dt ≤
(

4p

p− 1

)p ∫ 1

0

|f(t)|p dt. (7.73)

5.4 Option-Pricing in Discrete Time

We now take a look at an application of martingale theory to the mathematics
of securities in finance.7.6 In this example, we consider the oversimplified case
where there is only one type of stock, and the value of this stock changes at
times n = 1, 2, 3, . . . , N . You start with y0 dollars at time 0, and during the
time-period (n, n + 1), you can look at the performance of this stock up to
time n, and based on this information, you may decide to buy An+1-many
share, where a negative An+1 means selling An+1-many shares. If Sn denotes
the value of the stock at time n, we simplify the model further by assuming
that |Sn+1 − Sn| = 1. That is, the stock value fluctuates by exactly one
unit at each time-step, and the stock-value is updated precisely at time n for
every n = 1, 2, . . .. The only unexplained variable is the ending time N ; this
is the so-called time to maturity that will be explained later. Now we can
place things in a more precise framework.

Let Ω denote the collection of all possible ω := (ω1, . . . , ωN) where every
ωj takes the values ±1. Intuitively, ωj = 1 if and only if the value of our
stock went up by 1 dollar at time j. Thus, ωj = −1 means that the stock
went down by a dollar, and Ω is the collection of all theoretically possible
stock movements.

Define the functions S1, . . . , SN by S0(ω) := 0, and Sn(ω1, . . . , ωn) :=
ω1 + · · · + ωn (1 ≤ n ≤ N). We may slightly abuse the notation and also

7.6This section is based on the discussions of Baxter and Rennie [BR96, Chapter 2] and
Williams [Wil91, Section 15.2].
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write Sn(ω) for Sn(ω1, . . . , ωn). although it is clear that Sn only depends
on ω1, . . . , ωn. In this way, Sn(ω) represents the value of the stock at time
n, and corresponds to the stock movements ω1, . . . , ωn. During the time-
interval (n, n+ 1), you may look at ω1, . . . , ωn, choose a number An+1(ω) :=
An+1(ω1, . . . , ωn) that might depend on ω1, . . . , ωn, and buy An+1(ω)-many
shares. Therefore, if your starting fortune at time 0 is y0, then your fortune
at time n is

Yn(ω) = Yn(ω1, . . . , ωn) := y0 +

n∑
j=1

Aj(ω) [Sj(ω)− Sj−1(ω)] , (7.74)

as n ranges from 1, to N . The sequence A1(ω), . . . , AN(ω) is your investment
strategy, and recall that it depends on the stock movements ω1, . . . , ωN in a
“previsible manner;” i.e., for each n, An(ω) depends only on ω1, . . . , ωn.

In simple terms, a European call option is a gamble wherein you buy the
option to buy the stock at a given price C—the strike or exercise price—at
time N .

Now suppose that you have the option to call at C dollars. If it happens
that SN(ω) > C, then you have gained (SN (ω)−C) dollars. This is because
you can buy the stock at C dollars, and then instantaneously sell the stock
at SN(ω). On the other hand, if SN(ω) ≤ C, then it is unwise (if “SN < C”,
and immaterial if “SN = C”) to buy at C, and you gain nothing. Therefore,
no matter what happens, the value of your option at time N is (SN(ω)−C)+.
An important question that needs to be settled is this:

“What is the fair price for a call at C?”. (7.75)

This was answered by Black and Scholes [BS73], and the connections to
probability theory were discovered later by Harrison and Kreps [HK79] and
Harrison and Pliska [HP81]. To explain the solution to (7.75), we need a
brief definition from finance.

Definition 7.52 A strategy A is a hedging strategy if:

(i) Using A does not lead you to bankruptcy; i.e., Yn(ω) ≥ 0 for all n =
1, . . . , N .

(ii) Y attains the value of the stock at time N ; i.e., YN(ω) = (SN(ω)−C)+.

Of course any strategy A is also previsible.
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In terms of our model, we can think of the notion of y0 as the “fair price of
a given option” if, starting with y0 dollars, we can find a hedging/investment
strategy that yields the value of the said option at time N , no matter how
the stock values behave.

The solution of Black and Scholes [BS73]—transcribed to the present sim-
plified setting—depends on first making (Ω,P(Ω)) into a probability space,
where P(Ω) is the power set of Ω. Define the probability measure P so that
Xj(ω) := ωj are i.i.d. taking the values ±1 with probability 1

2
each. In

words, under the measure P, the stock values fluctuate at random but in
a fair manner. Another, yet equivalent, way to define P is as the product
measure:

P(dω) := Q(dω1) · · ·Q(dωN), ∀ω ∈ Ω, (7.76)

where Q({1}) = Q({−1}) = 1
2
. Using this probability space (Ω,P(Ω),P),

the functions A1, A2, . . . , S1, S2, . . ., and Y1, Y2, . . . are stochastic processes,
and we can present the so-called Black–Scholes formula for the fair price y0

of a European option.

Theorem 7.53 (The Black–Scholes Formula) There is a hedging strat-
egy iff y0 = E{(SN − C)+}.

Proof (First Part) We first prove Theorem 7.53 assuming that a hedging
strategy A exists. If so, then the process Yn defined in (7.74) is a martingale;
cf. Exercise 7.17.7.7 Moreover, by the definition of a hedging strategy, Yn ≥ 0
for all n, and YN = (SN − C)+ a.s. (in fact for all ω). On the other hand,
martingales have a constant mean; i.e., E{YN} = E{Y1} = y0, thanks to
(7.74). Therefore, we have shown that y0 = E{(SN − C)+} as desired. �

In order to prove the second—more important—half, we need the follow-
ing fact.

Theorem 7.54 (Martingale Representations) In (Ω,P(Ω),P), the pro-
cess S is a mean-zero martingale. Moreover, if M is any other martingale,
then it is a martingale transform of S; i.e., there exists a previsible process
H such that Mn = E{M1}+

∑n
j=1Hj(Sj − Sj−1), ∀n = 1, . . . , N.

7.7We need only check that E{|Yn|} < +∞, but this is elementary since (Ω,P(Ω), P) is
a finite probability space.
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Proof Since Lemma 7.37 proves that S is a mean-zero martingale, we can
concentrate on proving that M is a martingale transform.

Since M is adapted, Mn is a function of ω1, . . . , ωn only; i.e., by abusing
the notation slightly, Mn(ω) = Mn(ω1, . . . , ωn) for all ω ∈ Ω. Now the
martingale property states that E{Mn+1 |Fn} = Mn, a.s. On the other hand,
thanks to the independence of the ωj’s, for all bounded φ1, . . . , φn, where φj

is a function of ωj only,∫
Ω

n∏
j=1

φj(ωj)Mn+1(ω1, . . . , ωn, ωn+1) P(dω)

=
1

2

∫
Ω

n∏
j=1

φj(ωj)Mn+1(ω1, . . . , ωn,−1) Q(dω1) · · · Q(dωn)

+
1

2

∫
Ω

n∏
j=1

φj(ωj)Mn+1(ω1, . . . , ωn, 1) Q(dω1) · · · Q(dωn).

(7.77)

Define

Nn(ω) :=
1

2
Mn+1(ω1, . . . , ωn, 1) +

1

2
Mn+1(ω1, . . . , ωn,−1). (7.78)

Then Nn is Fn-measurable, and E{∏j φj ·Mn+1} = E{∏j φj ·Nn}. This and

the martingale property of M together show that7.8

Mn(ω) = E {Mn+1 |Fn} (ω)

=
1

2
Mn+1(ω1, . . . , ωn, 1) +

1

2
Mn+1(ω1, . . . , ωn,−1),

(7.79)

for almost all ω ∈ Ω. In fact, since Ω is finite, and since P assigns positive
measure to each ωj, the preceding equality must hold for all ω. Moreover,
since F0 = {?,Ω}, the preceding discussion continues to hold for n = 0 if we
define M0 := E{M1}. Since Mn(ω) = 1

2
Mn(ω)+ 1

2
Mn(ω), the following holds

for all 0 ≤ n ≤ N − 1 and all ω ∈ Ω:

Mn+1(ω1, . . . , ωn, 1)−Mn(ω) = Mn(ω)−Mn+1(ω1, . . . , ωn,−1). (7.80)

7.8While this calculation is intuitively clear, you should prove its validity by first checking
it for Mn+1 of the form, Mn+1(ω1, . . . , ωn+1) =

∏n+1
j=1 hj(ωj), and then appealing to a

monotone class argument.
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We can apply this as follows:

Mn+1(ω)−M0 =

n∑
j=0

(Mj+1(ω)−Mj(ω))

=
n∑

j=0

[
(Mj+1(ω)−Mj(ω))1{1}(ωj+1)

+ (Mj+1(ω)−Mj(ω))1{−1}(ωj+1)
]

=

n∑
j=0

(Mj+1(ω1, . . . , ωj, 1)−Mj(ω))
[
1{1}(ωj+1)− 1{−1}(ωj+1)

]
=

n∑
j=0

(Mj+1(ω1, . . . , ωj, 1)−Mj(ω)) [Sj+1(ω)− Sj(ω)] .

(7.81)

Define
Hj+1(ω) := Mj+1(ω1, . . . , ωj, 1)−Mj(ω). (7.82)

Since Hj+1(ω) is a function of ω1, . . . , ωj , H is a previsible process, and the
theorem follows. �

We are ready to prove the second half of the Black–Scholes formula.

Proof of Theorem 7.53 (Second Half) Note that the stochastic process
Yn := E{(SN −C)+ |Fn} (0 ≤ n ≤ N) is a nonnegative Doob martingale and
has the property that YN = (SN − C)+ almost surely, and hence for all ω
(why?). Thanks to the martingale representation theorem (Theorem 7.54),
we can find a previsible process A such that Yn = E{Y1}+

∑n−1
j=1 Aj(Sj−Sj−1).

Thus, as soon as we can prove that Aj(ω) ≥ 0 for all ω, it follows that
A is a hedging strategy with y0 := E{Y1}. By the martingale property,
E{Y1} = E{Y2} = · · · = E{YN}, which implies that y0 = E{(SN − C)+} and
proves the theorem. Thus, it suffices to prove that for all n, An ≥ 0 almost
surely (why?).7.9

Recall from (7.82) that An+1(ω) = Yn+1(ω1, . . . , ωn, 1)−Yn(ω). Therefore,
it remains to show that a.s.,

Yn+1(ω1, . . . , ωn, 1) ≥ Yn(ω1, . . . , ωn). (7.83)

7.9Negative investments are in fact allowed in the marketplace: If An(ω) ≤ 0 for some n
and ω, then for that ω, we may be selling short. This means that we may be selling stocks
that we do not own, hoping that when the clock strikes n, we will earn enough to pay our
debts.
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But we can write

Yn(ω) = E
{
(SN − C)+

∣∣Fn

}
(ω)

= E
{

(SN − Sn + Sn − C)+
∣∣∣Fn

}
(ω)

≤ E
{

(SN − Sn+1 + 1 + Sn − C)+
∣∣∣Fn

}
(ω),

(7.84)

since the function x 7→ x+ is nondecreasing, and SN(ω)− Sn(ω) = SN(ω)−
Sn+1(ω) + ωn+1 ≤ SN(ω) − Sn+1(ω) + 1. A similar calculation is made for
Yn+1(ω), viz.,

Yn+1(ω) = E
{

(SN − Sn+1 + Sn+1 − C)+
∣∣∣Fn+1

}
(ω). (7.85)

Since Sn+1(ω) = Sn(ω) + ωn+1, then almost surely,

Yn+1(ω1, . . . , ωn, 1)

= E
{

(SN − Sn+1 + 1 + Sn − C)+
∣∣∣Fn+1

}
(ω1, . . . , ωn, 1).

(7.86)

In light of (7.82) and the above, it suffices to show that

E
{

(SN − Sn+1 + 1 + Sn − C)+
∣∣∣Fn+1

}
(ω)

= E
{

(SN − Sn+1 + 1 + Sn − C)+
∣∣∣Fn

}
(ω), a.s.,

(7.87)

for then the right hand side is a.s. a function of (ω1, . . . , ωn). But this is
not too hard to do. Since SN − Sn+1 is independent of Fn+1 (and hence
also of Fn), and since Sn is Fn-measurable, for any two bounded functions
φ1, φ2 : Z→ R, two applications of (ii) of Theorem 7.6 reveal that a.s.,

E
{
φ1(SN − Sn+1)φ2(Sn)

∣∣∣Fn+1

}
= φ2(Sn)E

{
φ1 (SN − Sn+1)

∣∣∣Fn+1

}
= φ2(Sn)E {φ1 (SN − Sn+1)}
= φ2(Sn)E

{
φ1 (SN − Sn+1)

∣∣∣Fn

} (7.88)

= E
{
φ1 (SN − Sn+1)φ2(Sn)

∣∣∣Fn

}
.

By a monotone class argument, for any integrable φ : Z2 → R,

E
{
φ (SN − Sn+1, Sn)

∣∣∣Fn+1

}
= E

{
φ (SN − Sn+1, Sn)

∣∣∣Fn

}
. (7.89)

In particular, apply this with φ(x, y) := (x + 1 + y − C)+ to deduce (7.87)
and conclude the proof. �
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6 Exercises

Exercise 7.1 We say that Xn ∈ L1(P) converges to X ∈ L1(P) weakly in
L1(P) if for all bounded random variables Z, limn→∞ E{XnZ} = E{XZ}.
Show that Xn → X weakly in L1(P) if for any sub-σ-algebra S ⊆ F,
E{Xn |S} converges to E{X |S} weakly in L1(P).

Exercise 7.2 Consider a random variable X that equals 2, 1,−1 with prob-
ability 1

3
each, and let Y := sgn(X) be the sign of X, while Z := |X| is the

modulus of X.

1. (a) Prove that in the sense of elementary probability, E{X |Z = 1} = 0,
and E{X |Z = 2} = 2. From this conclude that E{X |Z} = 21{Z=2},
a.s.

2. (b) Using similar arguments, prove that E{X | Y } = 3
2
1{Y =1}−1{Y =−1},

a.s.

3. (c) Show that with probability one, E{E(X | Y ) |Z} 6= E{E(X |Z) | Y }.
In particular, there exist random variables U, V,W , such that with
positive probability E{E(U | V ) |W} 6= E{E(U |W ) | V }.

Exercise 7.3 Let ([0, 1],B([0, 1]),P) denote the Borel–Steinhaus probabil-
ity space, and consider X(ω) := ω for all ω ∈ [0, 1] so that X is uni-
formly distributed on [0, 1]. Compute E{X |B([0, 1

2
])}, and compare this to

E{X | σ([0, 1
2
])}. Convince yourselves that the latter is related to E{X |X ≥

1
2
} of classical theory. This is due to J. Turner.

Exercise 7.4 Suppose that Y ∈ L1(P) is real-valued, and that X is a ran-
dom variable that takes values in Rn . Then prove that there exists a Borel
measurable function b such that E{Y |X} = b(X), almost surely.
(Hint: First do this in the case that X is simple, then elementary, and then
somehow take “limits.”)

Exercise 7.5 Verify Proposition 7.12.

Exercise 7.6 Carefully prove Lemmas 7.31 and 7.32. In addition, construct
an example that shows that the difference of two stopping times, even if
nonnegative, need not be a stopping time.
(Hint: For Lemma 7.32 first observe that FT is an algebra. Then consider
the collection of all A ∈ FT such that A{ ∈ FT .)
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Exercise 7.7 Prove Lemma 7.37.

Exercise 7.8 Suppose X1, X2, . . . are i.i.d. random variables with P{X1 =
1} = 1−P{X1 = −1} = p 6= 1

2
, and prove (7.31). Also compute E{T} in the

case p = 1
2
.

(Hint: For the last portion, start by carefully proving that E{S2
T} = E{T}.)

Exercise 7.9 Suppose ξ and ζ are a.s.-nonnegative random variables such
that for all a > 0,

P{ξ > a} ≤ 1

a
E{ζ ; ξ ≥ a}. (7.90)

Prove then that for all p > 1, ‖ξ‖p ≤ ( p
p−1

)‖ζ‖p. Use this show the strong
Lp-inequality of Doob: If X is a nonnegative submartingale, then as long as
Xn ∈ Lp(P) for all n ≥ 1 and some p > 1,

E

{
max
1≤j≤n

Xp
j

}
≤
(

p

p− 1

)p

E{Xp
n}. (7.91)

Use this to prove Corollary 7.51.

Exercise 7.10 Suppose that X1, X2, . . . are independent mean-zero random
variables in L2(P), and that they are bounded; i.e., that there exists a con-
stant B such that almost surely, |Xn| ≤ B for all n. If Sn := X1 + · · ·+Xn

denotes the corresponding partial-sum process, then prove that for all λ > 0
and n ≥ 1,

P

{
max
1≤j≤n

|Sj| ≤ λ

}
≤ (B + λ)2

Var(Sn)
. (7.92)

This is from Khintchine and Kolmogorov [KK25].
(Hint: Apply Theorem 7.33 to Mn∧T where T := inf{j : |Sj| > λ} with
inf ? := ∞, and Mn := S2

n − Var(Sn), and note that on {T < +∞},
supn |ST∧n| ≤ B + λ.)

Exercise 7.11 Refine the martingale convergence theorem by showing that
whenever X is bounded in Lp (i.e., supn ‖Xn‖p < +∞) for some p > 1, then
limnXn exists also in Lp(P).
(Hint: Use Exercise 7.9.)

Exercise 7.12 Let γ1, γ2, . . . denote a sequence of i.i.d. random variables
with P{γ1 = 0} = P{γ1 = 1} = 1

2
. Consider the stochastic process X, where
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X1 := 1, and for all n ≥ 2, Xn := 2Xn−1γn. This is the mathematical model
for the double-or-nothing strategy in a fair game: You start with 1 dollar.
At each step, you bet twice your net worth if you won in the previous step,
and 1 dollar otherwise. If all these steps are independent from one another,
then your net worth at step n is Xn.

Prove that X is an L1-bounded martingale that does not converge in
L1(P). [In particular, Exercise 7.11 fails when p = 1.] Compute the almost
sure limit limnXn. (What is the gambling interpretation of all this? This is
known as the St.-Petersburg Paradox : While double-or-nothing will lead to
an eventual win with probability one, you never expect to win.)

Exercise 7.13 Suppose Xn is a submartingale with bounded increments;
i.e., there exists a nonrandom finite constant B such that almost surely,
|Xn −Xn−1| ≤ B for all n ≥ 2. Then prove that limnXn exists a.s. on the
set {supm |Xm| < +∞}.
(Hint: For any λ > 0, let T := inf{j : |Xj| ≥ λ} and first argue that Xn∧T

is a bounded submartingale.)

Exercise 7.14 Suppose that X1, X2, . . . are i.i.d. with P{X1 = ±1} = 1
2
.

As before, let Sn := X1 + · · ·+Xn.

1. Prove that for all n ≥ 1, and t ∈ R, E{etSn} ≤ e
1
2
nt2 .

2. Use this to prove that for all n ≥ 1, and t > 0,

P

{
max
1≤j≤n

|Sj| ≥ nt

}
≤ 2e−

1
2
nt2 . (7.93)

3. Use the above to prove the following half of the LIL (Theorem 7.48)
for ±1 random variables: With probability one,

lim sup
n→∞

Sn√
2n ln lnn

≤ 1. (7.94)

4. If Y1, Y2, . . . are i.i.d. with P{Y1 = 0} = P{Y1 = 1} = 1
2
, and if

Tn := Y1 + · · ·+ Yn, then prove that with probability one,

lim sup
n→∞

Tn − n
2√

2n ln lnn
≤ 1

2
. (7.95)

Check that this is one-half of the LIL (Theorem 7.48) for Tn.
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(Hint: For part 1, you may need to use Taylor’s expansion of cosh(λ).)

Exercise 7.15 (Hard) We continue with the previous exercise in order to
prove the other half of the LIL (Theorem 7.48) for ±1 random variables; i.e.,
that with probability one,

lim sup
n→∞

Sn√
2n ln lnn

≥ 1. (7.96)

The following argument was devised by de Acosta [dA83, Lemma 2.4].

1. Prove that (7.96) follows once we prove that for any c > 0,

lim inf
n→∞

1

ln lnn
ln P

{
Sn ≥

√
2cn ln lnn

}
≥ −c. (7.97)

2. To derive (7.97), choose pn →∞ such that n divides pn, and first prove
that

P
{
Sn ≥

√
2cn ln lnn

}
≥
(
P
{
Spn ≥

pn

n

√
2cn ln lnn

})n/pn

. (7.98)

3. Use the central limit theorem (Theorem 6.22) and the preceding with
pn ∼ αn÷ (ln lnn) to derive (7.97) and hence conclude the proof of the
LIL (Theorem 7.48) for ±1 random variables.

(Hint: For part 2 first write Sn = Spn +(S2pn−Spn)+ · · ·+(Sn−S(n−1)pn/n),
and note that each summand has the same distribution as Spn . Next observe
that if each of these n/pn terms is greater than pnλ/n, then Sn ≥ λ. Finally
choose λ judiciously. For part 3 optimize over the choice of α; you may also
need (7.48) at this stage.)



Part III

A Glimpse at Brownian Motion





Chapter 8

The Wiener Process: A
Mathematical Theory of
Brownian Motion

1 A Brief Historical Review

Brown [Bro28] noted empirically that the grains of pollen in water undergo
erratic motion, but he had no scientific explanation for this phenomenon.
This observation went largely unnoticed in the scientific literature.

Later on, Bachelier [Bac00] published his doctoral dissertation—under
the supervision of H. Poincaré—on the mathematics of the stock market.
In this work, Bachelier proposed a stochastic process that today is called
the Brownian motion. Unfortunately, at that time, the measure-theoretic
foundations of probability had not yet been cast. Therefore, Bachelier’s
work was not considered entirely rigorous, and for this reason, until quite
recently, his ideas was appreciated.

Einstein [Ein05] returned to the observation of R. Brown, and proposed a
theory for molecular motion that was based on Bachelier’s Brownian motion,
although Einstein arrived at the Brownian motion independently and appar-
ently unaware of the work of Bachelier [Bac00]. He then used this theory
to compute a very good estimate for Avagadro’s constant. Einstein’s theory
was based on the assumption that the Brownian motion process exists; an
assumption that was finally verified by Wiener [Wie23]. In the present con-
text, the contributions of von Smoluchowski [vS18] and Perrin [Per03] are
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also noteworthy.8.1

The said postulates on Brownian motion are as follows: Brownian motion
{W (t); t ≥ 0} is a random function of t (:= “time”) such that

(P-a) W (0) = 0, and for any given time t > 0, the distribution of W (t) is
normal with mean zero and variance t.

(P-b) For any 0 < s < t, W (t)−W (s) is independent of {W (u); 0 ≤ u ≤ s},
Think of s as the current time, to see that this condition is saying:
Given the present value, the future is independent of the past; i.e., W
satisfies the Markov property in continuous time.

(P-c) The random variableW (t)−W (s) has the same distribution asW (t−s).
That is, Brownian motion has stationary increments.

(P-d) The random path t 7→ W (t) is continuous with probability one.

Remark 8.1 One can also have a Brownian motion B that starts at an
arbitrary point x ∈ R by defining B(t) := x+W (t) where W is a Brownian
motion started at the origin. Check that B has all the properties of W
except that B(t) has mean x for all t ≥ 0, and B(0) = x. Unless stated to
the contrary, our Brownian motions always start at the origin.

So why is this a postulate and not a fact? The sticky point is part (P-
d); namely that the Brownian path must be continuous almost surely. In
fact, Lévy [Lév37, Théoréme 54.2, page 181], has shown that if, in (P-a),
you replace the normal distribution by any other, then either there is no
stochastic process that satisfies (P-a)–(P-c), or else (P-d) fails to hold!8.2

In summary, while the predictions of physics were correct, a rigorous
understanding of this phenomenon required the in-depth undertaking of
N. Wiener. Since Wiener’s work, Brownian motion has been studied by mul-
titudes of mathematicians. At best, these notes might whet your appetite to
learn more about this elegant theory.

8.1The phrase “Avagadro’s constant” is due to Perrin.
8.2Incidentally, some of these so-called pure-jump Lévy processes are now being used in

diverse applications such as mathematical ecology, economics, geology, and mathematical
finance. It now seems as if the normal distribution is not favored by all aspects of nature.
To learn more about this work of Lévy and much more, see the books of Bertoin [Ber96]
and Sato [Sat99].
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2 Normal Random Variables and Gaussian

Processes

Let us temporarily leave aside the question of the existence of Brownian
motion, and take a detour on normal distributions, random variables, and
processes. Before proceeding further, you may wish to recall Examples 1.19,
1.20, and 6.12, where normal random variables and their characteristic func-
tions have been introduced.

2.1 Normal Random Variables

This section’s definition of a normal random variable is a suitable general-
ization that are sometimes called (possibly) degenerate normal variables.

Definition 8.2 An R-valued random variable Y is said to be centered if
Y ∈ L1(P), and E{Y } = 0. An Rn -valued random variable Y := (Y1, . . . , Yn)
is said to be centered if each Yi is. If, in addition, Yi ∈ L2(P) for all i =
1, . . . , n, then the covariance matrix Q = (Qi,j) of Y is the matrix whose
(i, j)th entry is the covariance of Yi and Yj; i.e., Qi,j := E{YiYj}.

Suppose that X := (X1, . . . , Xn) denotes a centered n-dimensional ran-
dom variable in L2(P ). Let α ∈ Rn denote a constant vector, and note that
α ·X := α1X1 + · · ·+αnXn is a centered R-valued random variable in L2(P)
whose variance is computed as follows:

Var(α ·X) = E
{
(α ·X)2

}
=

n∑
i=1

n∑
j=1

αiE{XiXj}αj = α ·Qα, (8.1)

where Q = (Qi,j) is the covariance matrix of X. Since the variance of any
random variable is nonnegative, we have the following.

Lemma 8.3 If Q denotes the covariance matrix of a centered L2(P)-
valued random variable X := (X1, . . . , Xn) in Rn , then Q is a symmetric
nonnegative-definite matrix. Moreover, the diagonal terms of Q are given by
Qj,j = Var(Xj).

Definition 8.4 An Rn -valued random variable X := (X1, . . . , Xn) is cen-
tered normal (or centered Gaussian) if for all α ∈ Rn ,

E
{
eiα·X} = e−

1
2
α·Qα, (8.2)
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where Q is a symmetric nonnegative-definite real matrix. The matrix A is
called the covariance matrix of X.

We have seen in Lemma 8.3 that covariance matrices are symmetric and
nonnegative-definite. The converse is also true. This is a mere consequence
of the following. Among other things it shows that the matrix Q that was
used to define a centered normal random variable is indeed the covariance
matrix of X, so that our definitions are not inconsistent.

Theorem 8.5 If Q is any symmetric nonnegative-definite n-by-n matrix of
real numbers, then there exists a centered normal random variable X :=
(X1, . . . , Xn) whose covariance matrix is Q. Moreover, if Q is nonsingular,
then the distribution of X is absolutely continuous with respect to the n-
dimensional Lebesgue measure and has the density of Example 1.20; i.e.,

f(x) =
1√

(2π)n det(Q)
exp

(
−1

2
x ·Q−1x

)
, ∀x ∈ Rn . (8.3)

Finally, an Rn-valued random variable X := (X1, . . . , Xn) is centered Gaus-
sian if and only if all linear combinations of the Xj’s are centered Gaussian
random variables in R; i.e., iff for all α ∈ Rn , α ·X is a mean-zero normal
random variable.

Proof (Optional) Let λ1, . . . , λn denote the n eigenvalues of Q; we know
that the λj ’s are real and nonnegative. If we let v1, . . . , vn denote the or-
thonormal (column) eigenvectors corresponding to λ1, . . . , λn, then the n-by-
n matrix P := (v1, . . . , vn) is orthogonal; i.e., P ′P is equal to the n-by-n
identity matrix. Moreover, we can write Q = P ′ΛP , where Λ is the diagonal
matrix of the eigenvalues,

Λ :=


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

 . (8.4)

Next, let Z1, . . . , Zn denote n independent standard normal random variables
(R-valued). (They exist on some probability space, thanks to Example 5.17.)
It is not difficult to see that Z := (Z1, . . . , Zn) is a centered Rn -valued random
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variable whose covariance is the identity matrix. Having this define

X := P ′Λ
1
2Z, where Λ

1
2 :=


√
λ1 0 · · · 0
0

√
λ2 · · · 0

...
...

. . .
...

0 0 · · · √
λn

 . (8.5)

Since X := (X1, . . . , Xn) is a linear combination of centered random vari-
ables, it too is a centered Rn -valued random variable. Now for any α ∈ Rn ,

α ·X = α · P ′Λ
1
2Z =

n∑
l=1

αl

(
P ′Λ

1
2Z
)

l

=

n∑
k=1

Zk

[
n∑

l=1

αl

(
P ′Λ

1
2

)
l,k

]
:=

n∑
k=1

ZkAk.

(8.6)

Therefore, by independence (Lemma 5.12),

E
{
eiα·X} =

n∏
k=1

E
{
eiZkAk

}
= exp

(
−1

2

n∑
k=1

A2
k

)
. (8.7)

The last equality uses also the explicit computation of the characteristic
function of a standard normal variable; see Example 6.12. Now

A2
k =

[
n∑

l=1

αl

(
P ′Λ

1
2

)
l,k

]2

=

n∑
l=1

n∑
j=1

αlαj

(
P ′Λ

1
2

)
l,k

(
P ′Λ

1
2

)
j,k

=
n∑

l=1

n∑
j=1

αlαj

(
P ′Λ

1
2

)
l,k

(
Λ

1
2P
)

k,j
.

(8.8)

Therefore,

n∑
k=1

A2
k =

n∑
l=1

n∑
j=1

αlαjP
′Λ

1
2 Λ

1
2P =

n∑
l=1

n∑
j=1

αlαjQ = α ·Qα. (8.9)

In other words, we have constructed a centered Gaussian process X that has
covariance matrix Q. To check that Q is indeed the matrix of the covariances
of X, note that

E{XiXj} =

n∑
l=1

n∑
k=1

E

{(
P ′Λ

1
2

)
i,k
Zk ×

(
P ′Λ

1
2

)
j,l
Zl

}
. (8.10)
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But E{ZlZk} is equal to zero unless k = l in which case it equals one.
Therefore,

E{XiXj} =
n∑

k=1

(
P ′Λ

1
2

)
i,k
×
(
P ′Λ

1
2

)
j,k

=

n∑
k=1

(
P ′Λ

1
2

)
i,k
×
(
Λ

1
2P
)

k,j
= Qi,j,

(8.11)

as asserted.
Next we suppose that Q is nonsingular, and propose to show that f̂(t) =

exp(−1
2
t′Qt) for all t ∈ Rn . In other words, we intend to prove that∫

Rn

eit·xf(x) dx = e−
1
2
t·Qt, ∀t ∈ Rn . (8.12)

The left-hand side equals∫
Rn

eit·xf(x) dx =
1√

(2π)n det(Q)

∫
Rn

eit·x− 1
2
x′Q−1x dx. (8.13)

We can write Q = P ′Λ
1
2 Λ

1
2P , and appeal to fact that P ′ = P−1 to obtain

Q−1 = P ′Λ− 1
2 Λ− 1

2P , where Λ− 1
2 is the inverse of Λ

1
2 ; i.e., it is a diagonal

matrix with diagonal elements λ
− 1

2
1 , . . . , λ

− 1
2

n . We can now change variables

in the integral of the preceding display (y := Λ− 1
2Px). Note that x = P ′Λ

1
2y,

and x ·Q−1x = ‖y‖2—the square of the Euclidean norm of y. Finally, a Ja-

cobian calculation reveals that dx = det(P ′) det(Λ
1
2 )dy. Since P ′ = P−1, the

determinant of P equals 1. Therefore, dx =
√

det(P ′ΛP ) dy =
√

det(Q) dy.
Putting these calculations together leads us to∫

Rn

eix·tf(x) dx = (2π)−n/2

∫
Rn

exp

(
it · P ′Λ

1
2 y − 1

2
‖y‖2

)
dy

=

n∏
`=1

(2π)−1/2

∫ ∞

−∞
exp

(
it`

[
P ′Λ

1
2y
]

`
− 1

2
y2

`

)
dy`

(8.14)

I have appealed to Fubini–Tonelli (Theorem 3.6; how?). Each of the one-
dimensional integrals can be computed painlessly by completing the square,
and this will show that the end right-hand side equals exp(−1

2
t · Qt) as

asserted (check!).
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To complete this proof, we derive the assertion about linear combinations.
First suppose α · X is a centered Gaussian variable in R. We have already
seen that its variance must then α ·Qα where Q is the covariance matrix of
X. In particular, thanks to Example 6.12, E{exp(iα ·X)} = exp(−1

2
α ·Qα).

Thus, if α · X is a mean-zero normal variable in R for all α ∈ Rn , then X
is centered Gaussian. The converse is proved similarly: If X is a centered
Gaussian variable in Rn , fix any α ∈ Rn and define Y := α ·X to see that for
all t ∈ R, E{exp(itY )} = exp(−1

2
t2σ2) where σ2 = α · α ≥ 0 (nonnegative-

definiteness of Q), and therefore Y = α · X is a mean-zero normal random
variable with variance σ2. �

Remark 8.6 We have seen that the covariance matrix of the centered normal
random variable X := (X1, . . . , Xn) determines its distribution. To this I will
add in passing that there are somewhat strange constructions of two centered
normal variables X1 and X2 such that (X1, X2) is not normal even though
the covariance matrix of (X1, X2) always exists; cf. Exercise 8.3. This shows
that in general the normality of (X1, . . . , Xn) is a stronger property than the
normality of each of the Xj ’s.

There is an important corollary of this development that states that for
normal random vectors independence and uncorrelatedness are one and the
same.8.3

Corollary 8.7 Consider a centered Rn+m-valued normal random variable
(X1, . . . , Xn, Y1, . . . , Ym) such that E{XiYj} = 0 for all i = 1, . . . , n and
j = 1, . . . , m. Then (X1, . . . , Xn) and (Y1, . . . , Ym) are independent.

Proof (Optional) It is clear that (X1, . . . , Xn) is a centered Rn -valued
normal random variable whose covariance matrix A is described by Ai,j =
E{XiXj}. Similarly, (Y1, . . . , Ym) is a centered Rm -valued normal random
variable whose covariance matrix B is Bi,j = E{YiYj}. Then it is easy

to check that the covariance matrix of (X1, . . . , Xn, Y1, . . . , Ym) is

(
A 0
0 B

)
,

where the zeros are square matrices whose entries are all zeroes. This proves

8.3Suppose U is uniformly distributed on [0, 1], and define X := cos(2πU) and Y :=
sin(2πU). Then E{X} = E{Y } = 0 = E{XY }, so that X and Y are centered, as well as
uncorrelated. However, X and Y are not independent since X2 + Y 2 = 1. (Why is this
enough to show lack of independence?)
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that for all a ∈ Rn and b ∈ Rm ,

E
{
eia·X+ib·Y } = exp

(
−1

2
a · Aa

)
exp

(
−1

2
b · Bb

)
. (8.15)

(Why?) Exercise 8.1 finishes the proof. �

2.2 Brownian Motion as a Centered Gaussian Pro-
cesses

Definition 8.8 We say that a real-valued process X is centered Gaussian if
for any 0 ≤ t1, t2, t3, . . . , tk, (X(t1), . . . , X(tk)) is a centered normal random
variable in Rk . The function Q(s, t) := E{X(s)X(t)} is the corresponding
covariance function.

Now let us assume that we know that Brownian motion exists, and derive
some of its elementary properties.

Theorem 8.9 If W := {W (t) : t ≥ 0} denotes a Brownian motion. Then
W is a centered Gaussian process with covariance function Q(s, t) = s ∧ t.
Moreover, any a.s.-continuous centered Gaussian process whose covariance
function is Q and starts at 0 is a Brownian motion.8.4 Furthermore:

(i) (Symmetry) The process −W is a Brownian motion.

(ii) (Scaling) For any c > 0, the process X(t) := c−1/2W (ct) is a Brownian
motion.

(iii) (Time Inversion) The process Z(t) := tW (1
t
) is also a Brownian mo-

tion.

(iv) (Time Reversion) Given any T > 0, the process R(t) := W (T )−W (T−
t) is a Brownian motion indexed by t ∈ [0, T ].

(v) (Quadratic Variation) The process W has “quadratic variation” in the
following sense: For each t > 0, as n→∞,

Vn(t) :=
n−1∑
j=0

[
W

((
j + 1

n

)
t

)
−W

((
j

n

)
t

)]2
P−→ t. (8.16)

8.4The same theorem remains to hold without the a.s.-continuity assumption.
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(vi) (The Markov Property) For any T > 0, the process t 7→ W (t + T ) −
W (T ) is a Brownian motion, and is independent of σ{W (r); 0 ≤ r ≤
T}; i.e., for any t1, t2, . . . , tk ≥ 0 and all r1, . . . , rm ≤ T , the vector
(W (tj + T )−W (T ); 1 ≤ j ≤ k) is independent of (W (rl); 1 ≤ l ≤ m).

The following is a ready consequence that will be important for us later
on.

Corollary 8.10 Brownian motion is a continuous-time martingale; i.e., for
all t ≥ s ≥ 0, E{W (t) |Fs} = W (s), a.s., where Fs is the σ-algebra generated
by {W (u); 0 ≤ u ≤ s}.

Proof SinceW (t)−W (s) has mean zero, and is independent of Fs, E{W (t)−
W (s) |Fs} = 0, a.s. The result follows from the obvious fact that W (s) is
Fs-measurable. �

Remark 8.11 I wish to point out three interesting consequences of Theo-
rem 8.9:

1. Since W (t + T ) = [W (t + T ) −W (T )] + W (T ), the Markov property
tells us that given the values of W before time T , the “post-T” process
t 7→W (t+T ) is an independent Brownian motion that starts at W (T ).
In particular, the dependence of the post-T process on the past is local
since it only depends on the last value W (T ).

2. There can be many different Brownian motions on the same probability
space. For instance, note that {W (t); 0 ≤ t ≤ 1} and {W (1 − t) −
W (t); 0 ≤ t ≤ 1} are two different Brownian motions. However, they
are not the same process. For instance, evaluate both at time t = 1
and compare.

3. If W has a bounded variation with probability δ > 0, then Vn(t) would
have to converge to 0 with probability at least δ. This follows from
Vn(t) ≤ supu,v |W (u) −W (v)| ·∑n−1

j=0 |W ((j + 1)t/n) −W (jt/n)| and
the a.s. uniform continuity of W for t ∈ [0, 1]. Here, supu,v denotes the
supremum over all u, v ∈ [0, 1] such that |v − u| ≤ n−1. Consequently,
this shows that Brownian motion a.s. has unbounded variation. This
will be refined later on (Theorem 8.16).
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Proof First, let us find the covariance function of W , assuming that it is
indeed a centered Gaussian process: If t ≥ s ≥ 0, then we can appeal to the
fact that W (t)−W (s) is a mean-zero random variable that independent of
W (s), we can deduce that

Q(s, t) = E {W (s)W (t)} = E
{[
W (t)−W (s) +W (s)

]
W (s)

}
= E

{|W (s)|2} = s.
(8.17)

In other words for all s, t ≥ 0, Q(s, t) = s ∧ t. Next we will prove that W is
a centered Gaussian process.

By the independence of the increments of W , for all 0 = t0 ≤ t1 ≤ t2 ≤
· · · ≤ tn, and α1, . . . , αn ∈ R,

E

{
exp

(
i

n∑
k=1

αk [W (tk)−W (tk−1)]

)}

=
n∏

k=1

E
{
eiαk [W (tk)−W (tk−1)]

}
.

(8.18)

On the other hand, W (tk)−W (tk−1) is a mean-zero normal random variable
with variance tk − tk−1; its characteristic function is computed in Example
6.12, and this leads to

E

{
exp

(
i

n∑
k=1

αk [W (tk)−W (tk−1)]

)}

=

n∏
k=1

exp

(
−1

2
α2

k [tk − tk−1]

)
= e−

1
2
α·Mα,

(8.19)

where the matrix M is described by Mi,j = 0 if i 6= j, and Mj,j = tj−tj−1. In
other words, the vector (W (tj)−W (tj−1); 1 ≤ j ≤ n) is a centered normal
random variable in Rn . On the other hand, for any β := (β1, . . . , βn) ∈ Rn ,∑n

k=1 βkW (tk) =
∑n

k=1 αk[W (tk)−W (tk−1)] where βk := αk + · · ·+αn. This
proves that

∑n
k=1 βkW (tk) is a centered normal random variable in R, which

amounts to the fact that W is a centered Gaussian process.
Next we prove that if G := {G(t); t ≥ 0} is an a.s.-continuous centered

Gaussian process with covariance function Q, and if G(0) = 0, then G is
a Brownian motion. It suffices to show that whenever t > s, G(t) − G(s)
is independent of {G(u); 0 ≤ u ≤ s}, since the remaining conditions of
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Brownian motion are easily-verified for G (check!). To prove this assertion,
we fix 0 ≤ u1 ≤ · · · ≤ uk ≤ s and prove that G(t) − G(s) is independent
of (G(u1), . . . , G(un)). However, the distribution of the (n + 1)-dimensional
random vector (G(t)−G(s), G(u1), . . . , G(un)) is the same as that of (W (t)−
W (s),W (u1), . . . ,W (un)), since everything reduces to the same calculations
involving the function Q. This proves that G is a Brownian motion.

Parts (i)–(iv) follow from direct covariance computations. I will work out
one of them (part iv say), and leave the rest to you (check them!).

For any s ≤ t,

E {R(s)R(t)}
= E {(W (T )−W (T − s)) (W (T )−W (T − t))}
= E

{
(W (T ))2

}− E {W (T )W (T − s)}
− E {W (T )W (T − t)}+ E {W (T − s)W (T − t)} .

(8.20)

The above equals s = s ∧ t, since by the first portion of this proof, for any
u, v ≥ 0, E{W (u)W (v)} = u ∧ v.

In order to prove (v), we first note that

E {Vn(t)} =
n−1∑
j=0

E

{[
W

((
j + 1

n

)
t

)
−W

((
j

n

)
t

)]2
}

= t. (8.21)

Therefore, thanks to Chebyshev’s inequality (Corollary 2.16), it remains to
show that Var(Vn(t)) → 0. To show this, we compute ‖Vn(t)‖2

2 first. Write
dj := [W ((j + 1)t/n) − W (jt/n)]2 for brevity. Then, since dj and dk are
independent when j 6= k, and since E{d`} = t/n for all `, we have

E
{
(Vn(t))2} =

n−1∑
k=0

E{d2
k}+ 2

∑∑
0≤j<k≤n−1

(
t

n

)2

=
n−1∑
k=0

E{d2
k}+ t2 − t2

n
.

(8.22)

On the other hand, dk is the square of a real-valued mean-zero normal random
variable with variance t/n. Therefore, dk has the same distribution as (t/n)Z
and E{d2

k} = (t/n)2E{Z4}, where Z is a standard normal random variable
in R (why?). In particular,

Var (Vn(t)) =
t2

n

[
E{Z4} − 1

]→ 0, (8.23)
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as desired.8.5 We complete our proof by deriving the Markov property.
Note that t 7→ W (t + T ) − W (T ) is a continuous centered Gaussian

process. Therefore, we need to verify first that it is Brownian motion, and
next that it is independent of σ{W (r); 0 ≤ r ≤ T}. For the former, suppose
0 ≤ s ≤ t, and notice that

E
{(
W (s+ T )−W (T )

)(
W (t+ T )−W (T )

)}
= E{W (s+ T )W (t+ T )} − E{W (T )W (t+ T )}
− E{W (T )W (s+ T )}+ E

{
(W (T ))2

}
= (s+ T )− T − T + (T ) = s = s ∧ t.

(8.24)

In particular, t 7→ W (t + T ) −W (T ) is a Brownian motion. The assertion
about independence is proved similarly: If s ≤ T , then

E {W (s) (W (T + t)−W (T ))}
= E {W (s)W (T + t)} − E {W (s)W (T )} = s− s = 0.

(8.25)

Corollary 8.7 proves the independence of t 7→ W (t + T ) − W (T ) from
σ{W (r); 0 ≤ r ≤ T}. �

3 Wiener’s Construction: Brownian Motion

on [0, 1)

The big problem at this point is to show the existence of Brownian motion.
Once we have this, then we can proceed to study various aspects of Brownian
motion as we started doing in the previous section. The first step is a simple
reduction of this project: If we can show the existence of Brownian motion
indexed by [0, 1), then we have a general existence result.8.6 In more precise
term, we have

8.5In fact, E{Z4} can be computed as follows:

E{Z4} =
∫ ∞

−∞

x4e−x2/2

√
2π

dx =

√
2
π

∫ ∞

0

x4e−x2/2 dx = 3.

I have used the fact that Γ(5
2 ) = 3

4

√
π (check this!), which is a classical result of Stir-

ling [Sti30].
8.6Brownian motion indexed by [0, 1) has the same properties as Brownian motion, how-

ever we only define the process W (t) for t ∈ [0, 1). Likewise, we can discuss Brownian



Section 3. Wiener’s Construction: Brownian Motion on [0, 1) 161

Lemma 8.12 Suppose B0, B1, B2, . . . are independent Brownian motions in-
dexed by [0, 1). Then, the following recursive definition is a Brownian mo-
tion (indexed by [0,∞)): W (t) := B0(t) if t ∈ [0, 1). If t ∈ [1, 2), then
W (t) := B0(1) +B1(t− 1); more generally, whenever t ∈ [j, j + 1) for some
j ≥ 1, then

W (t) :=

j−1∑
k=0

Bk(1) +Bj(t− j). (8.26)

Remark 8.13 Suppose we know that Brownian motion indexed by [0, 1] ex-
ists (cf. Theorem 8.15 below). Then you should be able to use Theorem 5.17
to prove that on some probability space we can construct independent Br-
ownian motions B0, B1, B2, . . ..

Remark 8.14 Conversely, suppose that Brownian motion exists. Then we
can construct countably many independent Brownian motions indexed by
[0, 1) as follows: Define Bj(t) := W (t + j) −W (j) if t ∈ [j, j + 1). Indeed,
thanks to the Markov property (Theorem 8.9), B0, B1, . . . are independent
Brownian motions, each of which is indexed by [0, 1).

Proof (Optional) Since the above is a finite sum for any finite t ≥ 0, the
process W is a continuous centered Gaussian process. It remains to check its
covariance: If s ≤ t, then either we can find j ≥ 0 such that j ≤ s ≤ t < j+1,
or j ≤ s ≤ j + 1 ≤ ` ≤ t < `+ 1 for some ` > j. In the first case,

E {W (s)W (t)}

= E

{(
j−1∑
k=0

Bk(1) +Bj(t− j)

)(
j−1∑
k=0

Bk(1) +Bj(s− j)

)}

= E

{
j−1∑
k=0

(Bk(1))2
}

+ E {(Bj(s− j)Bj(t− j))}

= j + (s− j) = s = s ∧ t.

(8.27)

(Why?) In the second case, one obtains the same final answer, and I will
leave the calculations to you. In any event, W has the correct covariance

motion indexed by any interval, and more generally still, any measurable set T ⊆ [0,∞).
When T is “fractal-like,” the latter objects are quite interesting still, and appear in Peres
et al. [LPX02].
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function, and is therefore a Brownian motion. �

The simplest construction of Brownian motion indexed by [0, 1) (in fact,
[0, 1]) is the following minor variant of the original construction of Norbert
Wiener. Throughout, let X0, X1, X2, · · · denotes a sequence of i.i.d. nor-
mal random variables with mean zero and variance one; the existence of
this sequence is guaranteed by Theorem 5.17. Then, formally speaking, the
Brownian motion {W (t); 0 ≤ t ≤ 1} is the limit of the following sequence:

Wn(t) = tX0 +

√
2

π

n∑
j=1

sin(jπt)

j
Xj , 0 ≤ t ≤ 1, n = 1, 2, . . . . (8.28)

Of course, once we have the existence of Brownian motion indexed by [0, 1),
Lemma 8.12 proves the existence of Brownian motion. To properly prove
existence, we need to first complete the probability space. Informally, this
means that we declare all subsets of null sets measurable and null; this can
always be done at no cost (Theorem 1.22).

Theorem 8.15 (Wiener [Wie23]) If the underlying probability space is
complete, then with probability one, W (t) := limn→∞W2n(t) exists, and the
convergence holds uniformly for all t ∈ [0, 1]. Moreover, the process W is a
Brownian motion indexed by [0, 1].

Proof I will split the proof into three steps.

Step 1. Uniform Convergence.
For n = 1, 2, . . . and t ≥ 0 define Sn(t) :=

∑n
k=1 k

−1 sin(kπt)Xk, so that
Wn(t) = tX0 +

√
2π−1Sn(t). Stated more carefully, we have two processes

Sn(t, ω) and Wn(t, ω), and as always we do not show the dependence on ω.

We will show that S2n forms a Cauchy sequence a.s. and in L2(P), uni-
formly in t ∈ [0, 1]. Note that

[S2n+1(t)− S2n(t)]2 =

(
2n+1∑

j=2n+1

sin(jπt)

j
Xj

)2

≤
∣∣∣∣∣

2n+1∑
j=2n+1

eijπt

j
Xj

∣∣∣∣∣
2

. (8.29)
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Therefore,

[S2n+1(t)− S2n(t)]2 ≤
2n+1∑

j=2n+1

2n+1∑
k=2n+1

ei(j−k)πt

jk
XjXk

=

2n+1∑
k=2n+1

X2
j

j2
+ 2

2n−1∑
l=1

2n+1−l∑
k=2n+1

eilπt

k(l + k)
XkXl+k

≤
2n+1∑

k=2n+1

X2
j

j2
+ 2

2n−1∑
l=1

∣∣∣∣∣
2n+1−l∑
k=2n+1

XkXl+k

k(k + l)

∣∣∣∣∣ .
(8.30)

The right-hand side is independent of t ≥ 0, so we can take expectations and
apply Minkowski’s inequality (Theorem 2.25) to obtain∥∥∥∥sup

t≥0
|S2n+1(t)− S2n(t)|

∥∥∥∥2

2

≤
2n+1∑

k=2n+1

1

j2
+ 2

2n−1∑
l=1

∥∥∥∥∥
2n+1−l∑
k=2n+1

XkXl+k

k(k + l)

∥∥∥∥∥
2

=

2n+1∑
k=2n+1

1

j2
+ 2

2n−1∑
l=1

√√√√ 2n+1−l∑
k=2n+1

∥∥∥∥XkXl+k

k(k + l)

∥∥∥∥2

2

.

(8.31)

In the last step we have used the proof of Lemma 5.9. The final squared-
L2(P)-norm is easily seen to be equal to k−2(k + l)−2. On the other hand,

by monotonicity,
∑2n+1

k=2n+1 k
−2 ≤ 2−n, and

∑2n−1
l=1 (l + 2n)−1 ≤ 1. Therefore,

E

{
sup
t≥0

|S2n+1(t)− S2n(t)|2
}
≤ 2−n + 2 · 2−n/2. (8.32)

In particular, with probability one,
∑

n supt≥0 |S2n+1(t)− S2n(t)| < +∞,
which shows that as n → ∞, S2n(t) converges uniformly in t ≥ 0 to
the limiting random process S∞(t) :=

∑∞
j=1 sin(jπt)j−1Xj . In particular,

W (t) := limn→∞W2n(t) exists uniformly in t ≥ 0 almost surely, and this
concludes Step 1.

Step 2. Continuity and Distributional Properties.
The random map t 7→W2n(t) defined in (8.28) is obviously continuous. Being
an a.s. uniform limit of continuous functions, it follows that t 7→ W (t) is a.s.
continuous; see Step 3 below for a technical note on this issue. Moreover,
since W2n is a mean-zero Gaussian process, then so is W (Exercise 8.2). Since
W (0) = 0, it suffices to show that

E
{|W (t)−W (s)|2} = t− s, ∀0 ≤ s ≤ t. (8.33)
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(Why?) But the independence of the X’s—together with Lemma 5.9—yields

E
{|W (t)−W (s)|2} = (t− s)2 +

2

π2
E
{
(S∞(t)− S∞(s))2

}
= (t− s)2 +

2

π2

∞∑
j=1

(
sin(jπt)− sin(jπs)

j

)2

= (t− s)2 +
2

π2

∞∑
j=1

∣∣∣∣12
∫ π

−π

f(x)eijx dx

∣∣∣∣2 ,
(8.34)

where f(x) := 1[πs,πt](x) + 1[−πt,−πs](x) for x ∈ [−π, π]. Define φn(x) :=
(2π)−1/2 exp(inx) for x ∈ [−π, π], and n = 0,±1,±2, . . .. Then,

E
{|W (t)−W (s)|2} = (t− s)2 +

1

π

∞∑
j=1

∣∣∣∣∫ π

−π

f(x)φj(x) dx

∣∣∣∣2
= (t− s)2 +

1

2π

∞∑
j=−∞

j 6=0

∣∣∣∣∫ π

−π

f(x)φj(x) dx

∣∣∣∣2

=
1

2π

∞∑
j=−∞

∣∣∣∣∫ π

−π

f(x)φj(x) dx

∣∣∣∣2 .
(8.35)

By the Riesz–Fischer theorem (Theorem B.1), the right-hand side is equal
to (2π)−1

∫ π

−π
|f(x)|2 dx = (t− s). This yields (8.33).

Step 3. Technical Wrap-Up.
There are one or two subtle loose ends that we now address. That is, the
limit W (t) := limn→∞W2n(t) is known to exist (and holds uniformly over
all t ∈ [0, 1]) only with probability one. However, we may not yet have
a process W , since W (t, ω) is undefined for all ω at which that limnWn

does not exist uniformly. Therefore, we define W (t) := lim supn→∞W2n(t).
This is a well-defined measurable process. Moreover, with probability one,
it defines a continuous function. The remainder of the calculations of Step 2
goes through, since by redefining a random variable on a set of measure zero,
we do not change its distribution (unscramble this!). Finally, the completion
is needed to ensure that the event C that W is continuous is measurable; in
Step 1, we showed that C{ is a subset of a null set. Since the underlying
probability is complete, it too is null. �
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4 Nowhere-Differentiability

We are in position to prove the following striking theorem. Throughout, W
denotes a Brownian motion.

Theorem 8.16 (Paley et al. [PWZ33]) If the underlying probability space
is complete, then W is nowhere-differentiable, a.s.

Proof For any λ > 0 and n ≥ 1, consider the event

En
λ :=

{∃s ∈ [0, 1] : |W (s)−W (t)| ≤ λ2−n, ∀t ∈ s± 2−n
}
. (8.36)

(Why is this measurable?) We intend to show that
∑

n P(En
λ ) < +∞ no

matter the value of λ > 0. Indeed, suppose there exists s ∈ [0, 1] such
that for all t within 2−n of s, |W (s) − W (t)| ≤ λ2−n. Now there must
exist a (random) j = 0, . . . , 2n − 1 such that s ∈ D(j;n) := [j2−n, (j +
1)2−n]. Thus, for all t ∈ D(j;n), |W (s) −W (t)| ≤ λ2−n. By the triangle
inequality, we can deduce that for all u, v ∈ D(j;n), |W (u) − W (v)| ≤
2λ2−n = λ2−n+1. Subdivide D(j;n) into four smaller dyadic intervals, and
note that the successive differences in the values ofW (at the endpoints of the
subdivided intervals) are at most λ2−n+1. In other words, max0≤`≤3 |∆n

j,`| ≤
λ2−n+1, where

∆n
j,` := W

(
j2−n + (`+ 1)2−(n+2)

)−W
(
j2−n + `2−(n+2)

)
. (8.37)

So far, we have worked for any fixed ω. Now we obtain a probability estimate:
We have shown that

P (En
λ ) ≤ P

{
∃j = 0, . . . , 2n − 1 : max

0≤`≤3

∣∣∆n
j,`

∣∣ ≤ λ2−n+1

}
≤

2n−1∑
j=0

P

{
max
0≤`≤3

∣∣∆n
j,`

∣∣ ≤ λ2−n+1

}

=
2n−1∑
j=0

3∏
`=0

P
{∣∣∆n

j,`

∣∣ ≤ λ2−n+1
}
,

(8.38)

thanks to the independent-increments property of Brownian motion (P-b).
On the other hand, by the stationary-increments property of W , ∆n

j,` has
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a normal distribution with mean zero and variance 2−(n+2) (P-a and P-c).
Thus, for any β > 0,

P
{∣∣∆n

j,`

∣∣ ≤ β
}

=

∫ β2(n+2)/2

−β2(n+2)/2

e−x2/2

√
2π

dx ≤ β2(n+2)/2. (8.39)

(Check this!) Apply this with β := λ2−n+1 to deduce that P(En
λ ) ≤∑2n−1

j=0

∏3
`=0(4λ2−n/2) = 256λ42−n. In particular,

∑
n P(En

λ ) < ∞, as
promised earlier. By the Borel–Cantelli lemma (Theorem 5.23), for any
λ > 0, the following holds with probability one: For all but a finite number
of n’s,

inf
0≤s≤1

sup
|t−s|≤2−n

|W (s)−W (t)|
|s− t| ≥ inf

0≤s≤1
sup

|t−s|≤2−n

|W (s)−W (t)|
2−n

, (8.40)

which is at least λ. Thus, if W ′(s) exists for some s ∈ [0, 1], then |W ′(s)| ≥ λ
a.s. Since λ > 0 is arbitrary, this shows that |W ′(s)| = +∞, a.s., which
contradicts the differentiability of W at some s ∈ [0, 1]. By scaling (Theo-
rem 8.9), this shows that W is a.s. nowhere differentiable in [0, c] for any
c > 0, and therefore W is a.s. nowhere-differentiable.

Technical Aside in the Proof. I have actually proven is that there exists
a null set N , such that the collection D of all ω’s for which t 7→ W (t, ω)
is somewhere differentiable is inside N . The collection D need not be mea-
surable; I do not know if it is, and do not particularly care, since we can
complete the underlying probability space at no cost (Theorem 1.22). In the
said completion, D is a null set, and we are done. �

5 The Brownian Filtration and Stopping

Times

Recall the Markov property of Brownian motion (Theorem 8.9): Given any
fixed T > 0, the “post-T” process t 7→ W (T + t) − W (T ) is a Brownian
motion that is independent of σ{W (u); 0 ≤ u ≤ T}. Intuitively, this states
that given the value of W (T ), the process after time T is independent of the
process before time T .
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The strong Markov property8.7 states that the Markov property holds
for a large class of random times T that are called stopping times. We have
encountered such times when studying martingales in discrete time, and their
continuous-time definition is formally the same. To present it, let us start
by establishing some notation. Throughout, W is a Brownian motion (with
some prescribed starting point, say W (0) = x).

Definition 8.17 A filtration A := {At; t ≥ 0} is a collection of sub-σ-
algebras of F such that whenever s ≤ t, Fs ⊆ Ft. If A is a filtration, then a
measurable function T : Ω → [0,∞] (infinity is allowed) is a stopping time
(or A-stopping time) if for all t ≥ 0, {T ≤ t} is At-measurable. Given a
stopping time T , we can define AT by

AT := {A ∈ F : A ∩ {T ≤ t} ∈ At, ∀t ≥ 0} . (8.41)

T is called a simple stopping time if there exist 0 ≤ τ0, τ1, . . . < +∞ such
that for all ω ∈ Ω, T (ω) ∈ {τ0, τ1, . . .}.

An important filtration is the one supplied to us by the Brownian motion
W ; namely,

F0
t := σ {W (u); 0 ≤ u ≤ t} . (8.42)

In light of our development of martingale theory this definition is quite nat-
ural. Here are some of the properties of F0

T when T is a stopping time.

Proposition 8.18 If T is a finite F0-stopping time, then F0
T is a σ-algebra,

and T is F0
T -measurable. Furthermore, if S ≤ T is another stopping time,

then F0
S ⊆ F0

T . If A ⊆ R is either open or closed, then the first hitting time
TA := inf{t ≥ 0 : W (t) ∈ A} with inf ? := +∞ is a stopping time with
respect to F̄t, where the latter is the P-completion of F0

t .

Remark 8.19 Notice that {F̄t; t ≥ 0} is a filtration of σ-algebras.

Proof I will prove this proposition in five easy steps.
Step 1. F0

T is a Sigma-Algebra.
Since it is a monotone class, it suffices to show that F0

T is closed under

8.7See Kinney [Kin53], Hunt [Hun56], Dynkin and Jushkevich [DJ56], and Blumen-
thal [Blu57]. The phrase “strong Markov property” was coined by Dynkin and Jushke-
vich [DJ56].



168 Chapter 8. The Wiener Process

complementation. But for each t ≥ 0, A{ ∩ {T ≤ t} = {T ≤ t} \ (A ∩ {T ≤
t}) ∈ F0

t ; hence F0
T is a σ-algebra.

Step 2. T is F0
T -Measurable.

It suffices to show that T−1([0, a]) ∈ F0
T for all 0 ≤ a <∞ (why?). But given

any t ≥ 0, T−1([0, a]) ∩ {T ≤ t} = {T ≤ a ∧ t} ∈ F0
a∧t ⊆ F0

t , which does the
job.

Step 3. F0
S ⊆ F0

T .
Suppose A ∈ F0

S, and note that for any t ≥ 0, A ∩ {T ≤ t} = A ∩ {S ≤
t}∩ {T ≤ t}. Since A∩{S ≤ t} and {T ≤ t} are both in F0

t , this shows that
A ∩ {T ≤ t} ∈ F0

t and hence A ∈ F0
T ; i.e., F0

S ⊆ F0
T .

Step 4. TA is a Stopping Time When A is Open.
If A is open, then {TA ≤ t} is the event that there exists a time s before t at
which W (s) ∈ A. Let C denote the collection of all ω such that t 7→W (t, ω) is
continuous. We know that P(C) = 1, and since A is open, then {TA ≤ t}∩C
is the event that there exists a rational s ≤ t at which W (s) ∈ A (why?);
i.e.,

{TA ≤ t} ∩ C =
⋃

s≤t:s∈Q
{W (s) ∈ A} ∩ C

=
⋃

s≤t:s∈Q
{W (s) ∈ A} \

( ⋃
s≤t:s∈Q

{W (s) ∈ A} ∩ C{

)
.

(8.43)

This is where the completeness of F̄t comes in: Since F̄t is complete, all sub-
sets of null sets are F̄t-measurable (and null). In particular, ∪s≤t:s∈Q{W (s) ∈
A}∩C{ ∈ F̄t. On the other hand, it is clear that ∪s≤t:s∈Q{W (s) ∈ A} ∈ F0

t ⊆
F̄t, and this implies that {TA ≤ t} ∩ C ∈ F̄t. Since {TA ≤ t} ∩ C{ ⊆ C{ is
null, it is F̄t-measurable, thanks again to completeness. To summarize, we
have {TA ≤ t} = ({TA ≤ t} ∩ C) ∪ ({TA ≤ t} ∩ C{) ∈ F̄t, as desired.

Step 5. TA is a Stopping Time When A is Closed.
For each n = 1, 2, . . ., define An to be the set of all x ∈ R such that the
Euclidean distance between x and the set A is < 1

n
. It is clear that An is

open, and for the C of Step 4, {TA ≤ t} ∩ C = ∩n{TAn ≤ t} ∩ C. By Step 4,
{TA ≤ t} ∩ C is in Ft, and by the completeness of F̄t, so is {TA ≤ t}. �

Remark 8.20 The fact that we have to complete each F0
t in order to obtain

a reasonable continuous-time theory is a typical technical annoyance that
does not have a discrete-time counterpart. However, appealing to the said
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completeness is entirely harmless since we can always complete F0
t (Theo-

rem 1.22).

Remark 8.21 If you know what Fσ- and Gδ-sets are, convince yourself that
when A is of either variety, then TA is a stopping time. You may ask further,
“What about TA when A is measurable but is neither Fσ nor Gδ?” The
answer is that TA is a stopping time for any Borel set A, but there are no
known simple proofs of this deep fact.8.8

With this convention in mind, let me point out that we have yet to try
to prove that W (T ) is F̄T , or perhaps even F0

T -measurable. To do so we need
to making another round of modifications to the Ft’s.

8.9

Definition 8.22 A filtration {At; t ≥ 0} is right-continuous if for all t ≥ 0,
At = ∩ε>0At+ε.

Definition 8.23 The Brownian filtration {Ft; t ≥ 0} is defined as the small-
est right-continuous filtration that contains {F̄t; t ≥ 0}. That is, for all t ≥ 0,
Ft := ∩F̄s, where the intersection is taken over all s > t.

Remark 8.24 Note that any F0- or F̄-stopping time is also an F-stopping
time.

Proposition 8.25 If T is a finite stopping time, then W (T ) is FT -
measurable where W (T, ω) is defined as W (T (ω), ω).

The proof of this proposition relies on a simple, though important, ap-
proximation scheme.

Lemma 8.26 Given any finite F-stopping time T , one can construct a non-
increasing sequence of simple stopping times T1 ≥ T2 ≥ · · · such that
limn Tn(ω) = T (ω) for all ω ∈ Ω. In addition, FT = ∩nFTn.

8.8See Hunt [Hun57].
8.9Actually this is not necessary since Brownian motion is a.s. continuous but it would

take too long to prove this fact here.
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Proof Here is a receipt for the Tn’s:

Tn(ω) :=

∞∑
k=0

(
k + 1

2n

)
1[k2−n,(k+1)2−n)(T (ω)). (8.44)

Since every interval of the form [k2−n, (k + 1)2−n) is obtained by splitting
into two an interval of the form [j2−n+1, (j + 1)2−n+1), we have Tn ≥ Tn+1

(why?); it is also clear that Tn ≥ T .
To check that Tn is a stopping time, note that {Tn ≤ (k + 1)2−n} =

{T ≤ (k + 1)2−n} ∈ F(k+1)2−n , since T is a stopping time. Now given any
t ≥ 0, we can find k and n such that t ∈ [k2−n, (k + 1)2−n). Therefore,
{Tn ≤ t} = {Tn ≤ k2−n} = {T ≤ k2−n} ∈ Fk2−n ⊆ Ft, which proves that
the Tn’s are nonincreasing simple stopping times. Moreover, Tn converges
to T since 0 ≤ Tn − T ≤ 2−n. It remains to prove that FT ⊇ ∩nFTn ; cf.
Proposition 8.18 but replace F0 by F everywhere.

If A ∈ ∩nFTn , then for all n ≥ 1 and t ≥ 0, A ∩ {Tn ≤ t} is in Ft. Since
limn Tn = T , then A∩{T ≤ t} = ∩ε>0∩∞n=1 (A∩{Tn ≤ t+ ε}) is in ∩ε>0Ft+ε,
which is equal to Ft thanks to the right-continuity of the latter. �

Proof of Proposition 8.25 If T is a simple F-stopping time, then this is
not hard to prove. Indeed, suppose that T takes values in {τ0, τ1, . . .}. In
this case, given any Borel set A and any t ≥ 0,

{W (T ) ∈ A} ∩ {T ≤ t} =
⋃
n≥0:
τn≤t

{W (τn) ∈ A} ∩ {T = τn} ∈ Ft. (8.45)

For a general finite stopping time T , we can find simple stopping times
Tn ↓ T (Lemma 8.26) with FT = ∩nFTn. Let C denote the collection of ω’s
for which t 7→ W (t, ω) is continuous and recall that P(C) = 1. Then, for any
open set A ⊆ R,

{W (T ) ∈ A} ∩ C ∩ {T ≤ t}

=
⋂

ε>0 rational

∞⋃
m=1

∞⋂
n=m

{W (Tn) ∈ A} ∩ C ∩ {Tn ≤ t+ ε} . (8.46)

(Why?) Since Tn is a finite simple stopping time, {W (Tn) ∈ A} ∩ {Tn ≤
t} ∈ Ft. In particular, the completeness of Ft shows that the above, and
hence, {W (T ) ∈ A}∩ {T ≤ t} are also in Ft. The collection of all A ∈ B(R)
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such that {W (T ) ∈ A} ∩ {T ≤ t} ∈ Ft is a monotone class that contains
all open sets. This proves that {W (T ) ∈ A} ∩ {T ≤ t} for all A ∈ B(R)
(Theorem 1.27). �

6 The Strong Markov Property

We are finally in position to state and prove the strong Markov property of
Brownian motion.

Theorem 8.27 (The Strong Markov Property; Kinney [Kin53]) If T
is a finite F-stopping time where F is the Brownian filtration, then t 7→
W (T + t)−W (T ) is a Brownian motion that is independent of FT .

Proof I first prove this for simple stopping times, and then approximate,
using Lemma 8.26, a general stopping time with simple ones.

Step 1. Simple Stopping Times.
If T is a simple stopping time, then there exist τ0 ≤ τ1 ≤ . . . such that
T ∈ {τ0, τ1, . . .}, a.s. Now for any A ∈ FT , and for all B1, . . . , Bm ∈ B(R),

P {∀i = 1, . . . , m : W (T + ti)−W (ti) ∈ Bi , A}

=

∞∑
k=0

P {∀i = 1, . . . , m : W (τk + ti)−W (τk) ∈ Bi , T = τk , A} . (8.47)

But A ∩ {T = τk} = A ∩ {T ≤ τk} ∩ {T ≤ τk−1}{ is in Fτk
since A ∈ FT .

Therefore, by the Markov property (Theorem 8.9),

P {∀i = 1, . . . , m : W (T + ti)−W (ti) ∈ Bi , A}

=
∞∑

k=0

P {∀i = 1, . . . , m : W (τk + ti)−W (τk) ∈ Bi}

× P {T = τk , A}
= P {∀i = 1, . . . , m : W (ti) ∈ Bi}P(A).

(8.48)

This proves the theorem in the case that T is a simple stopping time. Indeed,
to deduce that t 7→ W (t + T ) − W (T ) is a Brownian motion, simply set
A := R. The asserted independence also follows since A ∈ FT is arbitrary.



172 Chapter 8. The Wiener Process

Step 2. The General Case.
In the general case, we approximate T by simple stopping times as in
Lemma 8.26. Namely, we find Tn ↓ T—all simple stopping times—such
that ∩nFTn = FT . Now for any A ∈ FT , and for all open B1, . . . , Bm ⊆ R,

P {∀i = 1, . . . , m : W (T + ti)−W (ti) ∈ Bi , A}
= lim

n→∞
P {∀i = 1, . . . , m : W (Tn + ti)−W (ti) ∈ Bi , A}

= lim
n→∞

P {∀i = 1, . . . , m : W (ti) ∈ Bi}P(A).

(8.49)

In the first equation we used the fact that the B’s are open and W is contin-
uous, while in the second equation we used the fact that A ∈ FTn for all n,
together with the result of Step 1 applied to Tn. This proves the theorem. �

7 The Reflection Principle

The reflection principle is a prime example of how the strong Markov prop-
erty (Theorem 8.27) can be applied to make nontrivial computations for the
Brownian motion.

Theorem 8.28 (The Reflection Principle; Bachelier [Bac00]) For any
nonrandom t > 0, sup0≤s≤tW (s) has the same distribution as |W (t)|. Equiv-
alently, for all a ≥ 0 and t ≥ 0,

P

{
sup

0≤s≤t
W (s) ≥ a

}
=

√
2

πt

∫ ∞

a

e−z2/(2t) dz. (8.50)

Proof I will write out a proof carefully; this translates to a picture-proof
that you are encouraged to discover on your own.

Define Ta := inf{s ≥ 0 : W (s) ≥ a} where inf ? := +∞. Thanks to
Proposition 8.18, Ta is an F̄- and hence an F-stopping time.

Step 1. Ta is a.s. Finite.
It is not hard to see that Ta < +∞, almost surely. Here is a quick proof: By
scaling (Theorem 8.9), for any t > 0,

P
{
W (t) ≥ √

t
}

=

∫ ∞

1

e−x2/2

√
2π

dx := c > 0. (8.51)
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Consequently, lim supt→∞ t−1/2W (t) ≥ 1 with probability at least c (why?).
But then this and the zero-one law (Exercise 8.5) together show that with
probability one, lim supt→∞ t−1/2W (t) ≥ 1. In particular, lim suptW (t) =
+∞, a.s. Since W is continuous a.s., it must then hit a at some finite time,
a.s.; i.e., Ta < +∞, a.s. Once again thanks to continuity, we also have that
W (Ta) = a, a.s.

Step 2. Reflection via The Strong Markov Property.
Note that {sup0≤s≤tW (s) ≥ a} = {Ta ≤ t}, which is Ft-measurable. More-
over, we can write

P {Ta ≤ t}
= P {Ta ≤ t , W (t) ≥ a}+ P {Ta ≤ t , W (t) < a}
= P {W (t) ≥ a}

+ P {Ta ≤ t , W (Ta + (t− Ta))−W (Ta) < 0}
= P {W (t) ≥ a}

+ E
(
P
{
W (Ta + (t− Ta))−W (Ta) < 0

∣∣FTa

}
; Ta ≤ t

)
,

(8.52)

since Ta is FTa-measurable (Proposition 8.18). On the other hand, by the
strong Markov property (Theorem 8.27), P{W (Ta + (t − Ta)) − W (Ta) <
0 |FTa} is the probability that a Brownian motion independent of FTa is below
zero at time t− Ta, conditional on the value of Ta. The stated independence
together with symmetry (Theorem 8.9) show that the said probability is a.s.
equal to P{W (Ta+(t−Ta))−W (Ta) > 0 |FTa} (why a.s.?).8.10 Therefore, we
make this change and backtrack in the preceding display to get the following:

P {Ta ≤ t}
= P {W (t) ≥ a}

+ E
(
P
{
W (Ta + (t− Ta))−W (Ta) > 0

∣∣FTa

}
; Ta ≤ t

)
= P {W (t) ≥ a} + P {Ta ≤ t , W (Ta + (t− Ta))−W (Ta) > 0}
= P {W (t) ≥ a} + P {Ta ≤ t , W (t) > a} = 2P {W (t) ≥ a} ,

(8.53)

as desired. Let me also point out that the last equality used the evident
fact that P{W (t) = a} = 0. By symmetry (Theorem 8.9), 2P{W (t) ≥ a} =
P{W (t) ≥ a}+ P{−W (t) ≥ a} = P{|W (t)| ≥ a}, as desired. �

8.10In other words, we have reflected the post-Ta process to get another Brownian motion,
whence the term “reflection principle.”
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The reflection principle has two curious consequences. The first is that
while we expect Brownian motion to reach a level a at some finite time, this
time has infinite expectation. That is,

Corollary 8.29 If Ta := inf{s ≥ 0 : W (s) = a}, then for any a 6= 0,
Ta < +∞, a.s. but E{Ta} = +∞.

Proof We have already seen that Ta is a.s. finite; let us prove that it has
infinite expectation. Without loss of generality, we can assume that a > 0
(why?). Notice that thanks to Theorem 8.28 we have

P {Ta ≥ t} = P

{
sup

0≤s≤t
W (s) ≤ a

}
= P {|W (t)| ≤ a}

=

∫ a

−a

e−x2/(2t)

√
2πt

dx =

∫ a/
√

t

−a/
√

t

e−y2/2

√
2π

dy.

(8.54)

This shows that limt→∞
√
tP{Ta ≥ t} = a

√
2/π; therefore,

∑∞
n=1 P{Ta ≥

n} = +∞, and Lemma 5.9 finishes the proof. �

The second surprising consequence of reflection principle is that Brownian
motion started at zero crosses zero infinitely-many times immediately after
starting out!

Corollary 8.30 With probability one, we can find random times σn, σ
′
n ↓ 0,

such that W (σn) > 0 and W (σ′n) < 0. In particular, given any ε > 0, with
probability one, there are infinitely-many zeros of W in the time interval
[0, ε].

Proof Thanks to the reflection principle (Theorem 8.28) given any ε >
0, P{sups≤εW (t) ≤ 0} = P{|W (ε)| ≤ 0}, which is zero since P{W (ε) =
0} = 0. Combining countably-many of the null sets leads to the statement
that outside one null set, sup0≤s≤εW (s) > 0 for all rational ε > 0. But
ε 7→ sup0≤s≤εW (s) is nondecreasing; therefore, we have shown that with
probability one, sup0≤s≤εW (s) > 0 for all ε > 0, and the null set does not
depend on ε. Since W (0) = 0, there a.s. must exist a random sequence σn ↓ 0
along which W is strictly positive. We can also apply this very statement
to the Brownian motion −W , and obtain σ′n ↓ 0 along which −W is strictly
positive. This completes our proof. �
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8 Exercises

Exercise 8.1 Prove the following: If X and Y are respectively Rn- and Rm-
valued random variables, then X and Y are independent if and only if for all
a ∈ Rn and b ∈ Rm ,

E
{
eia·X+ib·Y } = E

{
eiaX

} · E{eib·Y } . (8.55)

(Hint: To prove that the display implies independence, you may appeal to
the multidimensional inversion formula for characteristic functions.)

Exercise 8.2 Suppose for every n = 1, 2, . . . , Gn := (Gn
1 , . . . , G

n
k) is an

Rk -valued centered normal random variable. Suppose further that Qi,j :=
limn→∞ E{Gn

i G
n
j } exists and is finite. Then prove that Q is a symmetric

nonnegative-definite matrix, and that Gn converges weakly to a centered
normal random variable G := (G1, . . . , Gk) whose covariance matrix is Q.

Exercise 8.3 Let (Z1, Z2, Z3) be three independent random variables; Z1

and Z2 having a standard normal distribution, and Z3 = ±1 with probability
1
2

each. Define X1 := Z3|Z1| and X2 := Z3|Z2|, and prove that X1 and X2 are
each standard normal although (X1, X2) is not a Gaussian random variable.

Exercise 8.4 If W denotes a Brownian motion, then prove the following
LIL’s: With probability one,

lim sup
t→∞

W (t)√
2t ln ln t

= lim sup
t→0

W (t)√
2t ln ln(1

t
)

= 1. (8.56)

(Hint: First prove that lim supnW (n)÷√2n ln lnn = 1, where n is an inte-
ger; cf. the law of the iterated logarithm for random walks (Theorem 7.48).
Then devise a maximal inequality and use it to prove that not much happens
in-between n and n+ 1. For the “t→ 0” case, use time-inversion.)

Exercise 8.5 If W denotes a Brownian motion, define the tail σ-algebra
T as follows: First, for any t ≥ 0, define Tt to be the P-completion of
σ{W (u); u ≥ t}. Then, define T := ∩t≥0Tt.

1. Prove that T is trivial; i.e., for any A ∈ T, P(A) ∈ {0, 1}.
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2. Let F0
t := σ{W (u); u ≤ t}, define F̄t to be the P-completion of F0

t ,
and let Ft be the right-continuous extension; i.e., Ft := ∩F̄s, where
the intersection is taken over all rational s > t. Prove Blumenthal’s
zero-one law : F0 is trivial; i.e., for all A ∈ F0, P(A) ∈ {0, 1}.

(Hint: Theorem 5.15.)

Exercise 8.6 In this exercise, we refine Theorem 8.15 by showing that with
probability one, limn→∞Wn(t) = W (t) uniformly for all t ∈ [0, 1].

1. Check that for for any fixed n ≥ 1 and t ∈ [0, 1], {Wm(t)−W2n(t); m ≥
2n} is a martingale.

2. Conclude that m 7→ sup0≤t≤1 |Wm(t) −W2n(t)|2 is a submartingale as
m varies over 2n, . . . , 2n+1.

3. Prove that a.s., W (t) = limnWn(t) uniformly over all t ∈ [0, 1].

(Hint: In the last part you can use (8.32) in conjunction with Doob’s in-
equality (Theorem 7.43). )

Exercise 8.7 Our proof of Theorem 8.16 can be refined to produce a
stronger statement. Indeed, suppose α > 1

2
is fixed, and then prove that

with probability one,

lim
t→s

|W (s)−W (t)|
|s− t|α = +∞, ∀s ∈ [0, 1]. (8.57)

In other words, prove that there exists a null set outside which the above
holds simultaneously for all s ∈ [0, 1].
(Hint: First check that the very proof of Theorem 8.16 shows that this holds
for α > 3

4
. To improve this, subdivide every D(j;n) into l subintervals, where

l can be chosen as large as we please. The existing proof of Theorem 8.16
uses l = 4.)

Exercise 8.8 Given a fixed s > 0, consider the stopping time τs := inf{u ≥
s : W (u) = 0}.
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1. By first conditioning on Fs and then appealing to the reflection principle
(Theorem 8.28), prove that for all x ≥ s,

P {τs ≤ x} =

∫ ∞

−∞

e−z2/(2s)

√
2πs

P {|W (x− s)| ≥ |z|} dz

=

∫ ∞

−∞

e−z2/(2s)

√
2πs

P

{
|W (1)| ≥ |z|√

x− s

}
dz.

(8.58)

2. Conclude that the distribution of s−1τs is the same as that of 1+(g/G)2,
where g and G are independent standard normal random variables. In
particular, prove that the density function of τs is

f(x) =


[
2πx

√
s(x− s)

]−1

, if x > s,

0, otherwise.
(8.59)

3. Characterize all β ∈ R such that E{τβ
s } < +∞.

Exercise 8.9 Given a 6= 0, define Ta := inf{s ≥ 0 : W (s) = a}.
1. Find the density function, as well as the characteristic function, of Ta.

This gives rise to a so-called stable distribution with index 1
2
.

2. Show that the stochastic process {Ta; a ≥ 0} has i.i.d. increments.

(Hint: For the first part, study Corollary 8.29.)

Exercise 8.10 Let T0 := 0, and successively define Tk+1 := inf{s > Tk :
|W (s)−W (Tk)| = 1} for k = 1, 2, . . ..

1. Prove that the Tj ’s are stopping times.

2. Prove that the vectors (W (Tk+1)−W (Tk), Tk+1−Tk) (k = 0, 1, . . .) are
i.i.d.

3. Conclude that the process k 7→ W (Tk) is an embedding of a simple
random walk inside Brownian motion. [In fact, Skorohod [Sko61] has
shown that every mean-zero finite-variance random walk can be em-
bedded inside Brownian motion.]
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Chapter 9

A Taste of Stochastic
Integration

As these notes started with measure theory and integration, it is only appro-
priate that they end with stochastic integration. Although it is one of the
highlights of the theory of continuous-time stochastic processes, its analysis,
and more generally the analysis of continuous-time processes, has inherent
technical difficulties that are insurmountable in the amount of time that is
left to us. Therefore, I will conclude these lectures with a very incomplete,
somewhat nonrigorous, but hopefully coherent introduction to aspects of sto-
chastic integration. You can learn much more about this topic by reading
more specialized texts.

1 The Indefinite Itô Integral

Rather than present a general theory of stochastic integration, I will discuss
a special case that is: (i) Broad enough to be applicable for our needs. (ii)
Concrete enough so as to make the main ideas clear. The definitive treatment
is Dellacherie and Meyer [DM82].

If H := {H(s); s ≥ 0} is a “nice” stochastic process, I more or less follow
Itô [Itô44],9.1 and construct the integral

∫
H dW =

∫∞
0
H(s)W (ds) despite

the fact that W is nowhere differentiable a.s. (Theorem 8.16). Now let us

9.1See also Bru and Yor [BY02] to learn about the recently-rediscovered work of W. Doe-
blin on stochastic integrals.
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go ahead and officially redefine what we mean by a stochastic process in
continuous-time.9.2

Definition 9.1 A stochastic process (or process for brevity) X := {X(t); t ≥
0} is a product-measurable function X : [0,∞) × Ω → R. We often write
X(t) in place of X(t, ω); this is similar to what we did in discrete-time.

Remark 9.2 Check that the Brownian motion of the previous section is
indeed a stochastic process.

Now if H is nicely-behaved, then it stands to reason that we should de-
fine

∫
H dW as limn→∞ In(H), where “limn→∞” implies an as-yet-unspecified

form of a limit, and9.3

In(H) :=
∞∑

k=0

H

(
k

2n

)
×
[
W

(
k + 1

2n

)
−W

(
k

2n

)]
. (9.1)

It is abundantly clear that In(H) is a well-defined random variable if, for
instance, H has compact support; i.e., H(s) = 0 for all s sufficiently large.
The following performs some of the requisite book-keeping about n 7→ In(H).

Lemma 9.3 Suppose there exists a (random or nonrandom) T > 0 such that
with probability one, H(s) = 0 for all s ≥ T . Then, In(H) is a.s. a finite
sum, and

In+1(H)− In(H) =

∞∑
j=0

[
H

(
2j + 1

2n+1

)
−H

(
j

2n

)]
×
[
W

(
j + 1

2n

)
−W

(
2j + 1

2n+1

)]
.

(9.2)

9.2This is a nonstandard definition, but reduces technical difficulties without endangering
the essence of the theory. One can often show that our notion of a stochastic process is a
consequence of much weaker technical assumptions on X ; cf. Doob [Doo53, Chapter II]
under the general heading of “separability.”

9.3Notice the left-hand-rule approximation is being used here. This is the hallmark of
Itô’s theory of stochastic integration. In contrast to Riemann integration, in Itô’s theory,
the left-end-rule cannot be replaced by other rules (such as the midpoint- or the right-
hand-rule) without changing the resulting stochastic integral.
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Proof (Optional) The fact that the sum is finite is obvious. I will derive the
stated identity for In+1(H)− In(H). Throughout I will write Hk,n in place

of H(k2−n), and ∆k,m
j,n := W (j2−n) −W (k2−m). Although this makes the

reader’s task a bit more difficult, that of the typesetter is greatly simplified.
Consider the expression In+1(H) =

∑∞
k=0Hk,n+1∆

k,n+1
k+1,n+1, and split the

sum according to whether k = 2j or k = 2j + 1:

In+1(H) =

∞∑
j=0

Hj,n∆
j,n
2j+1,n+1 +

∞∑
j=0

H2j+1,n+1∆
2j+1,n+1
j+1,n

=
∞∑

j=0

Hj,n∆
j,n
2j+1,n+1 +

∞∑
j=0

Hj,n∆
2j+1,n+1
j+1,n

−
∞∑

j=0

(H2j+1,n+1 −Hj,n) ∆2j+1,n+1
j+1,n

=
∞∑

j=0

Hj,n

(
∆j,n

2j+1,n+1 + ∆2j+1,n+1
j+1,n

)
−

∞∑
j=0

(H2j+1,n+1 −Hj,n) ∆2j+1,n+1
j+1,n .

(9.3)

Because ∆j,n
2j+1,n+1 + ∆2j+1,n+1

j+1,n = ∆j,n
j+1,n, the first term is equal to In(H),

whence the lemma. �

Definition 9.4 A stochastic process H := {H(s); t ≥ 0} is said to be
adapted to the Brownian filtration F if for each s ≥ 0, H(s) is Fs-measurable.
It is a compact-support process if there exists a nonrandom T ≥ 0 such that
with probability one, H(s) = 0 for all s ≥ T . Finally, given p ≥ 1, H
is said to be Dini-continuous in Lp(P) if H(s) ∈ Lp(P) for all s ≥ 0, and∫ 1

0
ψp(r)r

−1 dr < +∞, where ψp(r) := sups,t: |s−t|≤r ‖H(s) − H(t)‖p denotes
the modulus of continuity of H in Lp(P).

Example 9.5

(a) Note that whenever H is compact-support, continuous, and a.s.-
bounded by a nonrandom quantity, then it is a.s. uniformly continuous
in Lp(P) for any p ≥ 1. In particular, ψp(t) → 0 as t → 0. The extra
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assumption of Dini-continuity in Lp(P) states that in fact ψp has to
converge to zero at some minimum rate. Here are some examples:

(b) Suppose H is (a.s.) differentiable with a derivative that satisfies K :=
supt ‖H ′(t)‖p < +∞.9.4 By the fundamental theorem of calculus, if

t ≥ s ≥ 0, then ‖H(s)−H(s)‖p ≤
∫ t

s
‖H ′(r)‖p dr ≤ K|t−s|. Therefore,

ψp(r) ≤ Kr, and H is easily seen to be Dini-continuous in Lp(P).

(c) Another class of important examples is found by considering processes
H of the form H(s) := f(W (s)), where f is a nonrandom differentiable
function with L := supx |f ′(x)| < +∞. In such a case, |H(s)−H(t)| ≤
L|W (s)−W (t)|, and we have ψp(r) ≤ Lcp

√
r, where cp = ‖Z‖p where

Z is a standard normal variable (why?). This yields the Dini-continuity
of H in Lp(P) for any p ≥ 1.

(d) More generally still, suppose we have H(s) := f(W (s), s), where f(x, t)
is nonrandom, differentiable in each variable, and satisfies: (i) There
exists a nonrandom T ≥ 0 such that f(x, s) = 0 for all s ≥ T ; and
(ii) M := supx,t |∂xf(x, t)| + supx,t |∂tf(x, t)| < +∞.9.5 Then, |H(s)−
H(t)| ≤ |f(W (s), s)−f(W (t), s)|+ |f(W (t), s)−f(W (t), t)|. Applying
the fundamental theorem of calculus, we arrive at the following (why?):

|H(s)−H(t)| ≤M (|W (s)−W (t)|+ |t− s|) . (9.4)

By Minkowski’s inequality (Theorem 2.25), for any p ≥ 1, ‖H(s) −
H(s)‖p ≤ M(‖W (s) −W (t)‖p + |t − s|) = M(cp|t − s|1/2 + |t − s|),
where cp = ‖Z‖p (why?). In particular, whenever r ∈ [0, 1], we have
ψp(r) ≤ M(cp + 1)

√
r, from which the Dini-continuity of H follows in

any Lp(P) (p ≥ 1).

Remark 9.6 (Cauchy Summability test) Dini-continuity in Lp(P) is equiv-

alent to the summability of ψp(2
−n). Indeed, we can write

∫ 1

0
ψp(t)t

−1 dt =

9.4Since (s, ω) 7→ H(s, ω) is product-measurable,
∫ |H ′(r)|p dr is a random variable, and

hence ‖H ′(t)‖p are well-defined (check this!).
9.5As is customary, ∂zg(x, y, z, w, · · · ) denotes the derivative of g with respect to the

variable z.
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∑∞
n=0

∫ 2−n

2−n−1 t
−1ψp(t) dt. Because ψp is nondecreasing, for the t in this inte-

gral, ψp(2
−n−1) ≤ ψp(t) ≤ ψp(2

−n), and 2n ≤ t−1 ≤ 2n+1. Therefore,

1

2

∞∑
n=1

ψp

(
2−n
)

=
1

2

∞∑
n=0

ψp

(
2−n−1

) ≤ ∫ 1

0

ψp(t)

t
dt ≤

∞∑
n=0

ψp

(
2−n
)
. (9.5)

In particular, H is Dini continuous in Lp(P) if and only if
∑

n ψp(2
−n) < +∞.

This method is generally ascribed to A. L. Cauchy.

We can now define
∫
H dW for adapted compact-support processes that

are Dini-continuous in L2(P). I will then show how one can improve the
assumptions on H .

Theorem 9.7 (Itô [Itô44]) Suppose H is an adapted compact-support sto-
chastic process that is Dini-continuous in L2(P). Then the stochastic integral∫
H dW := limn→∞ In(H) exists in L2(P), and

∫
H dW has mean zero and

variance

E

{(∫
H dW

)2
}

= E

{∫ ∞

0

H2(s) ds

}
. (9.6)

Finally, if a, b ∈ R, and V is another adapted compact-support stochastic
process that is Dini-continuous in L2(P), then with probability one,∫

(aH + bV ) dW = a

∫
H dW + b

∫
V dW. (9.7)

Definition 9.8 Equation (9.6) is called the Itô isometry.

Proof We employ Lemma 9.3, square both sides of the equation therein,
and take expectations, and obtain

‖In+1(H)− In(H)‖2
2 =

∑
0≤j≤2nT−1

∥∥∥∥H (2j + 1

2n+1

)
−H

(
j

2n

)∥∥∥∥2

2

×
∥∥∥∥W (

j + 1

2n

)
−W

(
2j + 1

2n+1

)∥∥∥∥2

2

.

(9.8)

To obtain this, we only need the facts that: (i) For t ≥ s, W (t) −W (s) is
independent of Fs (Theorem 8.27); and (ii) H(u) is adapted to Fs for u ≤ s.
But ‖W (s)−W (t)‖2

2 = t−s. Hence, in the preceding display, the expectation
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involving Brownian motion is equal to 2−n−2−n−1 = 2−n−1, whereas the first
expectation there is no more than ψ2

2(2
−n−1). Consequently, ‖In+1(H) −

In(H)‖2 ≤
√
Tψ2(2

−n−1). In particular, we can use the monotonicity of ψ2

to see that for any nonrandom N,M ≥ 1,

‖IN+M(H)− IN (H)‖2 ≤
N+M−1∑
n=N+1

‖In+1(H)− In(H)‖2

≤
√
T

N+M−1∑
n=N+1

ψ2

(
2−n−1

)
.

(9.9)

Thanks to this and Dini continuity (Remark 9.6) in L2(P), the above goes to
zero as N,M → ∞; i.e., n 7→ In(H) is a Cauchy sequence in L2(P), which
proves the assertion about L2(P)-convergence.

To compute E{∫ H dW}, I merely note that E{In(H)} = 0 (why?); this
is a consequence of the fact that for t ≥ s, W (t)−W (s) has mean zero, and is
independent of Fs, whereas H(u) is Fs-measurable for each u ≤ s. Similarly,
we can prove (9.6):

E

{(∫
H dW

)2
}

= lim
n→∞

‖In(H)‖2
2

= lim
n→∞

∞∑
k=0

E
{
H2
(
k2−n

)}
2−n

= E

{∫ ∞

0

H2(s) ds

}
,

(9.10)

where the many exchanges of limits and integrals are all justified by the
compact-support assumption on H , together with the continuity of the func-
tion t 7→ ‖H(t)‖2 (check this!).

Finally, I need to verify (9.7); but this follows from the linearity of H 7→
In(H) and the existence of L2(P)-limits. �

We now drop many of the technical assumptions in Theorem 9.7.

Theorem 9.9 (Itô [Itô44]) Suppose that H is an adapted stochastic pro-
cess, and E{∫∞

0
H2(s) ds} < +∞. Then one can define a stochastic integral∫

H dW that has mean zero and variance E{∫∞
0
H2(s) ds}. Moreover, if V
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is another such integrand-process, then for all a, b ∈ R∫
(aH + bV ) dW = a

∫
H dW + b

∫
V dW, a.s.

E

{∫
H dW ·

∫
V dW

}
= E

{∫ ∞

0

H(s)V (s) ds

}
.

(9.11)

Throughout, let m denote the Lebesgue measure on (R,B(R)), and let
L2(m × P) denote the corresponding product L2-space. In particular, note
that

E

{∫ ∞

0

H2(s) ds

}
=

∫∫
Ω×[0,∞)

H2 dmdP = ‖H‖2
L2(m×P), (9.12)

and E{∫ H(s)V (s) ds} is the L2(m× P)-inner product between H and V .
The following technical result is the main step in constructing the general

stochastic integral.

Proposition 9.10 Given any stochastic process H ∈ L2(m×P) we can find
stochastic processes H1, H2, · · · , all compact-support and Dini-continuous in
L2(P), such that limnHn = H in L2(m× P).

Theorem 9.9 follows from immediately from this.

Proof of Theorem 9.9 Thanks to Proposition 9.10 we can find adapted
stochastic processes Hn that are compact-support Dini-continuous in L2(P),
and converge to H in L2(m×P). Thanks to the Itô isometry (equation 9.6),∫
Hn dW is a Cauchy sequence in L2(P), since Hn is a Cauchy sequence in

L2(m × P). Consequently,
∫
H dW := limn

∫
Hn dW exists in L2(P). The

properties of
∫
H dW follow readily from those of

∫
Hn dW , and the L2(P)-

convergence that we proved earlier. �

I will conclude this section by proving the one remaining proposition.

Proof of Proposition 9.10 (Optional) I will proceed in three steps, each
of which reduces the problem to a more restrictive class of processes H .

Step 1. Reduction to the Compact-Support Case.
Define Hn(t) := H(t)1[0,n](t), and note that Hn is an adapted compact-
support stochastic process. Moreover,

lim
n→∞

‖H −Hn‖2
L2(m×P) = lim

n→∞
E

{∫ ∞

n

H2(s) ds

}
= 0. (9.13)
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In other words, for the remainder of the proof, we can and will assume
without loss of generality that H is also compact-support.

Step 2. Reduction to the L2-Bounded Case.
I first extend the definition of H to all R by assigning H(t) = 0 if t < 0.
Next, define for all n ≥ 1,

Hn(t) := n

∫ t

t−(1/n)

H(s) ds, ∀t ≥ 0. (9.14)

You should check that H is an adapted stochastic process. Moreover, for all
t ≥ T +1, Hn(t) = 0, so that Hn is also compact-support. Next, I claim that
Hn is bounded in L2(P); i.e., supt ‖Hn(t)‖2 < +∞. Indeed, by the Cauchy–
Bunyakovsky–Schwarz inequality (Corollary 2.26), and by the Fubini–Tonelli
theorem (Theorem 3.6),

sup
t≥0

‖Hn(t)‖2
2 ≤ n sup

t≥0

∫ t

t−(1/n)

‖H(s)‖2
2 ds

≤ n

∫ ∞

0

‖H(s)‖2
2 ds = n‖H‖2

L2(m×P).

(9.15)

(Why?) It remains to prove that Hn converges in L2(m× P) to H .

Since
∫∞
0
H2(s) ds < +∞ a.s., then thanks to the Lebesgue differentiation

theorem (Theorem 7.49), with probability one, Hn(t) → H(t) for almost
every t ≥ 0. Therefore, by Fubini–Tonelli (Theorem 3.6), limnHn = H , (m×
P)-almost surely (why?). According to the dominated convergence theorem
(Theorem 2.22), to finish this step we need to only prove that supn |Hn| ∈
L2(m× P). In fact, I will prove (9.17) below which is slightly stronger still.

Now note that supn |Hn| ≤ MH , where the latter is the “maximal func-
tion,”

MH(t) := sup
n≥1

(
n

∫ t

t−(1/n)

|H(s)| ds
)
, ∀t ≥ 0. (9.16)

For each ω, MH(t+ n−1) is our good-old Hardy–Littlewood maximal func-
tion of H , and you should check that MH is an adapted stochastic pro-
cess. In addition, by applying Corollary 7.51 with p = 2 we obtain,∫∞
0
|MH(s)|2 ds ≤ 64

∫∞
0
H2(s) ds. This is useful only if the right-hand side

is finite. But since H(t) = 0 for all t ≥ T and supt ‖H(t)‖2 < ∞, the right-
hand side of the preceding inequality is finite for almost-all ω. In particular,



Section 2. Continuous Martingales in L2(P) 187

we can appeal to Fubini–Tonelli (Theorem 3.6) to take expectations, and
then square-roots to deduce that

‖MH‖L2(m×P) ≤ 8‖H‖L2(m×P), (9.17)

which is finite. This is the desired inequality, and reduces the problem to
H ’s that are bounded in L2(P) and compact-support.

Step 3. The Conclusion.
Finally, if H is bounded in L2(P) and compact-support, then we define Hn

by (9.14) and note that Hn is differentiable, and H ′
n(t) = n{H(t) − H(t −

n−1)}. Therefore, supt ‖H ′
n(t)‖2 ≤ 2n supt ‖H(t)‖2 < +∞, and part (b) of

Example 9.5 proves the asserted Dini-continuity of Hn. On the other hand,
the argument developed in Step 2 proves that Hn → H in L2(m × P), and
this concludes the proof. �

2 Continuous Martingales in L2(P)

The theories of continuous-time martingale and stochastic integration are
intimately connected. Thus, before proceeding further, we take a side-step,
and have a quick look at martingale-theory in continuous-time. To avoid
unnecessary abstraction, F will denote the Brownian filtration throughout.9.6

Definition 9.11 A process M := {M(t); t ≥ 0} is a (continuous-time)
martingale if:

1. For all t ≥ 0, M(t) ∈ L1(P).

2. If t ≥ s ≥ 0, then E{M(t) |F(s)} = M(s), a.s.

M is said to be a continuous L2-martingale if t 7→ M(t) is almost-surely
continuous, and M(t) ∈ L2(P) for all t ≥ 0.

Essentially all of the theory of martingales in discrete-time has continuous-
time translations for continuous L2(P)-martingales. Here is a first sampler.

Theorem 9.12 (Optional Stopping) If M is a continuous L2-martingale
and S ≤ T are bounded F-stopping times, then E{M(T ) |FS} = M(S), a.s.

9.6This section’s proofs are optional reading.
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Proof (Optional) Throughout, choose and fix some nonrandom K > 0
such that almost-surely, T ≤ K.

This is a consequence of Theorem 7.33 if S and T are simple stopping
times. In general, let Sn ↓ S and Tn ↓ T be the simple stopping times of
Lemma 8.26, and note that the condition S ≤ T imposes Sm ≤ Tn for all
n ≤ m (why?). We have already seen that for all n ≥ m,

E
{
M(Tn)

∣∣∣FSm

}
= M(Sm), a.s. (9.18)

Moreover, this very argument implies that M(T1),M(T2), . . . is a (discrete-
time) martingale in its own filtration. Since Tn ≤ T + 2−n ≤ K + 2−n, by
Exercise 7.9,

E

{
sup
n≥1

M2(Tn)

}
≤ 4 sup

n≥1
E
{
M2(Tn)

} ≤ 4E

{
M2

(
K +

1

2

)}
, (9.19)

which is finite. Since M is continuous, a.s., M(Tn) → M(T ), a.s.. There-
fore, by the dominated convergence theorem (Theorem 2.22), we also have
M(Tn) → M(T ) in L2(P). This and conditional Fatou’s lemma (Theo-
rem 7.6) together imply that

lim
n→∞

∥∥∥E{M(Tn)
∣∣∣FSm

}
− E

{
M(T )

∣∣∣FSm

}∥∥∥
2

≤ lim
n→∞

‖M(T )−M(Tn)‖2 = 0.
(9.20)

Therefore, by (9.18), M(Sm) = E{M(T ) |FSm}, a.s. To finish the proof, we
simply let m→∞, and appeal to the time-reversed martingale convergence
theorem (in discrete time; Theorem 7.47). �

The following is a related result whose proof is relegated to the exercises.

Theorem 9.13 (Doob’s Inequalities) If M is a continuous L2-martingale,
then for all λ, t > 0,

P

{
sup

0≤s≤t
|M(s)| ≥ λ

}
≤ 1

λ
E

{
|M(t)| ; sup

0≤s≤t
|M(s)| ≥ λ

}
. (9.21)

In particular, for all p > 1,

E

{
sup

0≤s≤t
|M(s)|p

}
≤
(

p

p− 1

)p

E {|M(t)|p} . (9.22)
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3 The Definite Itô Integral

It is a good time to also mention the definite Itô integral, which is simply
defined as

∫ t

0
H dW :=

∫
H1[0,t) dW for all adapted processes H such that

E{∫ t

0
H2(s) ds} < +∞ for all t ≥ 0. This defines a collection of random

variables
∫ t

0
H dW—one for each t ≥ 0. The following is of paramount im-

portance, since it says something about the properties of the random function
t 7→ ∫ t

0
H dW .

Theorem 9.14 If H is an adapted process such that E{∫ t

0
H2(s) ds} < +∞,

then we can construct the process t 7→ ∫ t

0
H dW such that it is a continuous

L2-martingale.

Proof (Optional) According to Theorem 9.9,
∫ t

0
H dW exists, so we can

proceed by verifying the assertions of the theorem. This will be done in three
steps.

Step 1. Reduction to H that is Dini-Continuous in L2(P).
Suppose we have proved the theorem for all processes H that are adapted
and Dini-continuous in L2(P). In this first step we prove that this implies
the remaining assertions of the theorem.

Let H be an adapted process such that for all t ≥ 0, E{∫ t

0
H2(s) ds} <

+∞. We can find adapted processes Hn that are Dini-continuous in L2(P)
and

lim
n→∞

E

{∫ t

0

[Hn(s)−H(s)]2 ds

}
= 0. (9.23)

Indeed, we can apply Proposition 9.10 to H1[0,t], and use the recipe of the
said proposition for Hn. Then apply the proposition to Hn1[0,t]. This shows
that in fact Hn can even be chosen independently of t as well.

By the Itô isometry (equation 9.6),

lim
n→∞

E

{(∫ t

0

H dW −
∫ t

0

Hn dW

)2
}

= lim
n→∞

E

{∫ t

0

(
H(s)−Hn(s)

)2

ds

}
= 0.

(9.24)

But
∫ t

0
Hn dW − ∫ t

0
Hn+k dW =

∫ t

0
(Hn−Hn+k) dW , a.s., and is a continuous

L2-martingale. Therefore, by Doob’s maximal inequality (Theorem 9.13), for
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any nonrandom but fixed T > 0,

lim
n→∞

E

{
sup

0≤t≤T

(∫ t

0

Hn dW −
∫ t

0

Hn+k dW

)2
}

= 0. (9.25)

In particular, for each T > 0, there exists a stochastic process X :=
{X(t); t ≥ 0} and a (random) subsequence n′ →∞ such that with probabil-
ity one, limn′→∞ sup0≤t≤T |

∫ t

0
Hn′ dW − X(t)| = 0. Moreover, the same uni-

form convergence holds in L2(P), and along the original subsequence n→∞.
Consequently, this and (9.24) together show that X is a particular construc-
tion of t 7→ ∫ t

0
H dW that is a.s.-continuous and adapted. In other words, X

is (obviously) adapted and a.s.-continuous, but it also satisfies

P

{
X(t) =

∫ t

0

H dW

}
= 1, ∀t ≥ 0. (9.26)

(Why?) Finally, X(t) ∈ L2(P) for all t ≥ 0, so it remains to prove that X is
a martingale. But remember that we are assuming that t 7→ ∫ t

0
Hn dW is a

martingale.

By the conditional Jensen inequality (7.6), and by L2(P)-convergence,∥∥∥∥E{X(t+ s) |Fs} − E

{∫ t+s

0

Hn dW

∣∣∣∣Fs

}∥∥∥∥
2

=

∥∥∥∥E{X(t+ s)−
∫ t+s

0

Hn dW

∣∣∣∣Fs

}∥∥∥∥
2

≤
∥∥∥∥X(t+ s)−

∫ t+s

0

Hn dW

∥∥∥∥
2

,

(9.27)

which goes to zero as n → ∞. On the other hand, since t 7→ ∫ t

0
Hn dW is

a martingale, this also shows that
∫ t

0
Hn dW → E{X(t + s) |Fs} in L2(P).

But we have already seen that
∫ t

0
Hn dW → X(t) in L2(P). Therefore, with

probability one, E{X(t+ s) |Fs} = X(s); i.e., X is martingale as claimed.

Step 2. A Continuous Martingale in the Dini-Continuous Case.
Now we suppose that H is in addition Dini-continuous in L2(P), and prove
the theorem in this special case. Together with Step 1, this completes the
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proof. The argument is based on a trick. Define,

Jn(H)(t) :=
∑

0≤k<2nt−1

H

(
k

2n

)
×
[
W

(
k + 1

2n

)
−W

(
k

2n

)]
+H

(b2nt− 1c
2n

)
×
[
W (t)−W

(b2nt− 1c
2n

)]
.

(9.28)

This is a minor variant of In(H1[0,t]). Indeed, you should check that

Jn(H)(t)− In

(
H1[0,t]

)
= H

(b2nt− 1c
2n

)
×
[
W (t)−W

(b2nt− 1c+ 1

2n

)]
,

(9.29)

whose L2(P)-norm goes to zero as n → ∞. But Jn(H) is also a stochastic
process that is (a) adapted, and (b) continuous in t. In fact, it is also a
martingale. Here is why: Suppose t ≥ s ≥ 0. Then there exist integers
0 ≤ k ≤ K ≤ 2ns − 1 such that s ∈ D(k;n) := [k2−n, (k + 1)2−n) and
t ∈ D(K;n). Then,

Jn(H)(t)− Jn(H)(s)

=
∑

k≤j<K

H

(
j

2n

)
×
[
W

(
j + 1

2n

)
−W

(
j

2n

)]
+H

(
K

2n

)
×
[
W (t)−W

(
K

2n

)]
−H

(
k

2n

)
×
[
W (s)−W

(
k

2n

)]
,

(9.30)

where
∑

k≤j<k(· · · ) := 0 (in the case that k = K). Since W has independent
increments, E{[· · · ] |Fs} = 0, a.s. where [· · · ] is any of the terms of the
preceding display in the square-brackets. The adaptedness of H and Corol-
lary 8.10 together show that E{Jn(H)(t) − Jn(H)(s) |Fs} = 0, a.s., which
then proves the martingale property.

Step 3. The Conclusion.
To finish the proof, suppose H is an adapted process that is Dini-continuous
in L2(P). A calculation similar to that of Lemma 9.3 reveals that for any
nonrandom T > 0,

lim
n→∞

sup
0≤t≤T

E

{(
Jn+1(H)(t)− Jn(H)(t)

)2
}

= 0. (9.31)
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Therefore, by Doob’s maximal inequality (Theorem 9.13),

lim
n→∞

E

{
sup

0≤t≤T

(
Jn+1(H)(t)−Jn(H)(t)

)2
}

= 0. (9.32)

This implies that a subsequence of Jn(H) converges a.s. and uniformly for
all t ∈ [0, T ] to some process X. Since Jn(H) is a continuous process, X
is necessarily continuous a.s. Furthermore, the argument applied in Step 1
shows that here too X is a martingale. Finally, we have already seen that for
any fixed t ≥ 0, Jn(H)(t) − In(H1[0,t]) → 0 in L2(P). Since In(H1[0,t]) →∫ t

0
H dW in L2(P), this shows that P{X(t) =

∫ t

0
H dW} = 1, which proves

the result. �

4 Quadratic Variation

I now elaborate a little on quadratic variation; cf. Theorem 8.9. Quadratic
variation is a central theme in continuous-time martingale theory, but it
requires too much time to study properly. Therefore, we will only develop
the portions for which we have immediate use.

Throughout, we define the second-order analogue of In (9.1);

Qn(H) :=

∞∑
k=0

H

(
k

2n

)
×
[
W

(
k + 1

2n

)
−W

(
k

2n

)]2

. (9.33)

Theorem 9.15 Suppose H is an adapted compact-support process that
is uniformly continuous in L2(P); i.e., limr→0 ψ2(r) = 0. Then,
limn→∞Qn(H) =

∫∞
0
H(s) ds in L2(P).

Proof To simplify the notation, I write for all integers k ≥ 0 and n ≥ 1,

Hj,n := H

(
j

2n

)
, dk,n := W ((k + 1)2−n)−W (k2−n). (9.34)

Recall next that we can find a nonrandom T > 0 such that for all s ≥ T ,
H(s) = 0, a.s. Throughout, we keep such a T fixed.

Step 1. Approximating the Lebesgue Integral.
I begin by proving that the Riemann–integral approximation of the Lebesgue
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integral
∫∞
0
H(s) ds converges in L2(P). Namely, note that∣∣∣∣∣

∞∑
k=0

Hk,n2
−n −

∫ ∞

0

H(s) ds

∣∣∣∣∣
≤

∑
0≤k≤2nT−1

∫ (k+1)2−n

k2−n

|Hk,n −H(s)| ds,
(9.35)

since if we remove the absolute values, the preceding becomes an identity. In
particular, apply Minkowski’s inequality (Theorem 2.25) to deduce that∥∥∥∥∥

∞∑
k=0

Hk,n2
−n −

∫ ∞

0

H(s) ds

∥∥∥∥∥
2

≤
∑

0≤k≤2nT−1

2−nψ2

(
2−n
) ≤ Tψ2

(
2−n
)
.

(9.36)

As n→∞, the above converges to zero, and Step 1 follows.
Step 2. Completing the Proof.

Note that H(k2−n) is independent of dk,n, and the latter has mean zero and
variance 2−n. Therefore, Qn(t) −∑∞

k=0Hk,n2
−n =

∑∞
k=0Hk,n

[
d2

k,n − 2−n
]
.

Next, we square this and take expectations.∥∥∥∥∥Qn(t)−
∞∑

k=0

Hk,n2
−n

∥∥∥∥∥
2

2

=
∑

0≤k≤2nT−1

E
{
H2

k,n

}
E
{[
d2

k,n − 2−n
]2}

+ 2
∑∑

0≤j<k≤2nT−1

E
{
Hk,nHj,n

[
d2

k,n − 2−n
] [
d2

j,n − 2−n
]}

=
∑

0≤k≤2nT−1

E
{
H2

k,n

}
E
{[
d2

k,n − 2−n
]2}

+ 2
∑∑

0≤j<k≤2nT−1

E
{
Hk,nHj,n

[
d2

j,n − 2−n
]}× E

{
d2

k,n − 2−n
}

=
∑

0≤k≤2nT−1

E
{
H2

k,n

}
E
{[
d2

k,n − 2−n
]2}

.

(9.37)

But dk,n is normal with mean zero and variance 2−n; so 2−n/2dk,n is standard
normal, and so, [d2

k,n−2−n] has the same distribution as 2−n[Z2−1] where Z is
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standard normal. But E{[Z2−1]2} = E{Z4}−1 = 2, thanks to footnote 8.5.
Therefore, ‖Qn(t) −∑k Hk,n2

−n‖2
2 = 2 · 4−n

∑
0≤k≤2nT−1 ‖Hk,n‖2

2. But Dini-
continuity insures that t 7→ ‖H(t)‖2 is continuous, and hence bounded on
[0, T ] by some constantKT . Thus, ‖Qn(t)−∑k Hk,n2

−n‖2
2 ≤ TK2

T 2−n+1 → 0.
This and Step 1 together prove the result. �

5 Itô’s Formula and Two Applications

The chain rule of calculus states that given two continuously-differentiable
functions f and g, (f ◦g)′ = f ′(g)g′. In its integrated form, this is integration-
by-parts, and states that for all t ≥ s ≥ 0 (say),

f(g(t))− f(g(s)) =

∫ t

s

f ′(g(u))g′(u) du. (9.38)

To cite a typical example, let me mention that when we use f(x) = x2, this
yields g2(t) − g2(0) =

∫ t

0
g dg, where dg(s) is formally the same thing as

g′(s) ds. Itô’s formula tells us what happens if we replace g by the nowhere-
differentiable function W . A consequence of this is that W 2(t) −W 2(0) =∫ t

0
W dW + 1

2
t. Consequently, the stochastic integration-by-parts formula has

an extra 1
2
t factor.

Theorem 9.16 (Itô’s Formula; [Itô44]) If f : R → R has two continuous
derivatives, then for all t ≥ s ≥ 0, the following holds a.s.:

f(W (t))− f(W (s)) =

∫ t

s

f ′(W (r))W (dr) +
1

2

∫ t

s

f ′′(W (r)) dr, (9.39)

provided that there exist constants A,B > 0 such that |f ′(x)| ≤ AeB|x|.

Remark 9.17

1. In other words, the nowhere-differentiability of W forces us to replace
the right-hand side of (9.38) with a stochastic integral plus a second-
derivative term.
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2. Itô’s formula continues to hold even if we assume only that f ′′ exists
almost-everywhere, and that

∫ t

s
(f ′(W (r))2 dr < +∞, a.s. Of course,

then we have to make sense of the stochastic integral, etc. Rather than
prove such refinements here, I urge you to have a look at [DM82] for a
definitive account.

3. The strange-looking condition on f ′ ensures that it does not grow too
fast. This condition can be removed nearly altogether but this develop-
ment rests on introducing a new family of processes that are called local
martingales. To see how this exponential-growth condition comes up
in the context of Theorem 9.9, note that for

∫ t

0
f ′(W (s))W (ds) to be

well defined, we need E := E{∫ t

0
[f ′(W (s))]2 ds} be finite for all t ≥ 0.

But then the said condition on f ′ implies:

E =

∫ ∞

−∞

∫ t

0

[
f ′(x)

]2 e−x2/(2s)

√
2πs

ds dx

≤ A

∫ ∞

−∞

∫ t

0

e2B|x| e
−x2/(2t)

√
2πs

ds dx < +∞.

(9.40)

Proof in the Case that f ′′′ is Bounded and Continuous Without loss
of generality, s := 0 (why?).

The proof of Itô’s formula starts out in the same manner as that of (9.38).
Namely, by telescoping the sum, we first write,

f
(
W
(
2−n b2nt− 1c))− f(0)

=
∑

0≤k≤2nt−1

[
f

(
W

(
k + 1

2n

))
− f

(
W

(
k

2n

))]
.

(9.41)

To this we apply Taylor’s expansion with remainder, and write

f
(
W
(
2−n b2nt− 1c))− f(0)

=
∑

0≤k≤2nt−1

f ′
(
W

(
k

2n

))
dk,n

+
1

2

∑
0≤k≤2nt−1

f ′′
(
W

(
k

2n

))
d2

k,n +
∑

0≤k≤2nt−1

Rk,nd
3
k,n,

(9.42)
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where dk,n := W ((k + 1)2−n)−W (k2−n), and |Rk,n| ≤ supx |f ′′′(x)| := M <
∞, uniformly for all k, n. In the last identity, the first term converges in
L2(P) to

∫ t

0
f ′(W (s))W (ds) by Theorem 9.7; see also Example 9.5. The

second term, on the other hand, converges in L2(P) to 1
2

∫ t

0
f ′′(W (s)) ds;

cf. Theorem 9.15. In addition, f(W (2−nb2nt − 1c)) → f(W (t)) a.s. and
in L2(P) by continuity, and thanks to the dominated convergence theo-
rem (Theorem 2.22). It, therefore, suffices to prove that as n → ∞,∑

0≤k≤2nt−1Rk,nd
3
k,n

L1(P)−→ 0. On the other hand, as n→∞,

E

{ ∑
0≤k≤2nt−1

|Rk,n| × |dk,n|3
}

≤ M
∑

0≤k≤2nt−1

E
{|dk,n|3

} ≤M2nt · 2−3n/2E{|Z|3} −→ 0,

(9.43)

where Z is standard normal. This completes the proof. �

Itô’s formula is particularly useful because it identifies various martin-
gales. This in turn leads to explicit calculations. The following is a brief sam-
pler; it is proved by applying the Itô formula with f(x) = x, and f(x) = x2,
respectively.

Corollary 9.18 W and t 7→ W 2(t) − t are continuous L2-martingales. In
addition, W 2(t)− t = 1

2

∫ t

0
W dW , a.s.

Next is an interesting refinement; it is proved by similar arguments in-
volving Taylor series expansions that were used to derive Theorem 9.16.

Theorem 9.19 Suppose W is Brownian motion started at a given point
W (0) = x0 ∈ R. If f = f(x, t) is twice continuously-differentiable in x and
continuously-differentiable in t, and if for all t ≥ 0, E{∫ t

0
|∂xf(W (s), s)|2 ds} <

+∞, then with probability one,

f (W (t), t)− f(x0, 0)

=

∫ t

0

∂xf (W (s), s) W (ds)

+

∫ t

0

[
1

2
∂2

x,xf (W (s), s) + ∂tf (W (s), s)

]
ds,

(9.44)

where ∂2
x,xf(x, t) := ∂x∂xf(x, t). This theorem is valid even if f is complex-

valued.
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Of course, I owe you the definition of
∫
H dW when H is complex-

valued, but this is easy: Whenever possible,
∫
H dW :=

∫
Re(H) dW +

i
∫

Im(H) dW .
Rather than use up the remainder of our time to prove this theorem, I

close these notes by applying Theorem 9.19 to make two fascinating compu-
tations.9.7

5.1 A First Look at Exit Distributions

If W denotes the Brownian motion started at some fixed point x0 ∈ (−1, 1),
one might wish to know when it leaves a given interval (−1, 1) (say). The
following remarkable formula of Paul Lévy answers a generalization of this
question.9.8

Theorem 9.20 (Lévy [Lév51]) Choose and fix a, b > 0, and define
T−b,a := inf{s > 0 : W (s) = a or − b}, where inf ? := +∞. If
W (0) = x0 ∈ (−b, a) if also fixed, then the characteristic function of T−b,a is
given by the following: For all real numbers λ 6= 0,

E
{
eiλT−b,a

}
=

e(1+i)x0

√
λ

e(1+i)a
√

λ + e−(1+i)b
√

λ
+

e−(1+i)x0

√
λ

e(1+i)b
√

λ + e−(1+i)a
√

λ
. (9.45)

Proof Let us apply Itô’s formula (Theorem 9.19) with f(x, t) := ψ(x)eiλt,
where λ 6= 0 is fixed, and the function ψ satisfies the following (complex)
eigenvalue problem:

1

2
ψ′′(x) = iλψ(x) ψ(a) = ψ(−b) = 1. (9.46)

You can directly check that the solution is

ψ(x) :=
e(1+i)x

√
λ

e(1+i)a
√

λ + e−(1+i)b
√

λ
+

e−(1+i)x
√

λ

e(1+i)b
√

λ + e−(1+i)a
√

λ
. (9.47)

9.7Although this may be a natural way to end these notes, you should be made aware that
this chapter’s treatment of the subject is far from complete. Perhaps its greatest omission is
connections between Itô’s formula and William Feller’s characterization of one-dimensional
diffusions—one of the crowning achievements of its day; cf. Feller [Fel55b, Fel55a, Fel56].
For a pedagogic account that includes some of the most recent progress in this area see
Bass [Bas98] and Revuz and Yor [RY99].

9.8For this and much more, see Knight [Kni81, Chapter 4].
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Clearly, |∂xf(x, t)| is bounded in (x, t) so that E{∫ t

0
|∂xf(W (s), s)|2 ds} <

+∞. Moreover, the eigenvalue problem for ψ implies that 1
2
∂x,xf(x, t) +

∂tf(x, t) = 0. Therefore, Theorem 9.19 tells us that f(W (t), t) − f(x0, 0)
is a mean-zero (complex) martingale. By the optional stopping theorem
(Theorem 9.12),

E {f (W (T−b,a ∧ t) , T−b,a ∧ t)} = f (x0, 0) , (9.48)

which equals ψ(x0). Thanks to the dominated convergence theorem (The-
orem 2.22), and by the a.s.-continuity of W , we can let t → ∞ to deduce
that

E {f (W (T−b,a) , T−b,a)} = ψ(x0). (9.49)

But f(W (T−b,a)) = ψ(W (T−b,a))e
iλT−b,a = eiλT−b,a , since with probability one,

W (T−b,a) ∈ {−b, a}, and ψ(a) = ψ(−b) = 1 (check the details!). This proves
the theorem. �

5.2 A Second Look at Exit Distributions

Let us have a second look at Theorem 9.20 in the simplest setting where
x0 := 0 and a = b = 1. In this case, (9.45) somewhat simplifies to the
following elegant form: For all λ ∈ R \ {0},

E
{
eiλT−1,1

}
=

2

e
√

2iλ + e−
√

2iλ
=
[
cosh

(√
2iλ
)]−1

. (9.50)

(I have used the elementary fact that (1 + i) =
√

2i.) In principle, the
uniqueness theorem for characteristic functions (Theorem 6.20) tells us that
the preceding formula determines the distribution of T := T−1,1. However,
in reality it is not always so easy to extract the right piece of information
from (9.50). For instance, if it were not for (9.50), then we could not even
easily prove that [cosh(

√
2iλ)]−1 is a characteristic function of a probability

measure. Or for that matter, can you see from (9.50) that T has finite
moments of all orders?

The following contains a different representation of the distribution of T
that answers the question about the moments of the stopping time T .9.9

9.9See Ciesielski and Taylor [CT62] for an interesting multidimensional analogue.
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Theorem 9.21 (Chung [Chu47]) For any t > 0,

P {T > t} =
4

π

∞∑
n=1

(−1)n+1

n
e−

1
8
n2π2t. (9.51)

Consequently, P{T > t} = 4
π

exp(−1
8
π2t) × (1 + Θ(t)), where Θ(t) → 0 as

t→∞.

In particular, when t is large, P{T > t} ≤ 2 exp(−1
8
π2t). In lieu of

Lemma 5.9, for any p ≥ 1,

E {T p} = p

∫ ∞

0

tp−1P{T > t} dt < +∞, (9.52)

which shows that T has moments of all orders, as asserted earlier. In fact,
we can even carry out the computation further to produce a formula for the
pth moment of T :

E {T p} =
Γ(p+ 1)23p+2

π1+2p

∞∑
n=1

(−1)n+1

n1+2p
, ∀p ≥ 1, (9.53)

where Γ(p) :=
∫∞
0
sp−1e−s ds denotes the Gamma function (check!).

Theorem 9.21 implies also the following unusual formula:

Corollary 9.22 (Chung [Chu47]) We have

P

{
sup

0≤s≤1
|W (s)| ≤ x

}
=

4

π

∞∑
n=1

(−1)n+1

n
exp

(
−n

2π2

8x2

)
. (9.54)

In particular, P{sup0≤s≤1 |W (s)| ≤ x} = 4
π

exp(−1
8
π2x−2) × (1 + Θ(x−2)),

where Θ(x−2) → 0 as x→ 0.

I will prove only Theorem 9.21. While it is possible to write a very quick
proof, I will sketch an argument that I believe shows the motivation behind
the proof. [It is a sketch only because I will not develop some of the details
of the PDE and Fourier-analysis arguments.]
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Proof of Theorem 9.21 (Sketch) This proof is presented in three quick
steps.

Step 1. Itô’s Formula and a Sturm–Liouville Problem.
Itô’s formula (Theorem 9.19) tells us that modulo technical conditions,
f(W (t), t) − f(0, 0) is a mean-zero martingale provided that f satisfies the
partial differential equation, 1

2
∂2

x,xf + ∂tf = 0. It is known that f must have
the form f(x, t) = ψ(x)eλt; this is called separation of variables. Rather
than prove this fact, I will merely be guided by it, and seek functions of the
type f(x, t) := ψ(x)eλt that satisfy the said PDE. This is an easy task, for in
terms of ψ the PDE is: ψ′′+2λψ = 0 (check!). Any ψ that satisfies this ODE
yields a function f for which we then have (modulo technical integrability),
E{f(W (T ∧ t), T ∧ t} = f(0, 0). In the last part I used the optional stopping
theorem (Theorem 9.12). Equivalently,

E {f (W (T ), T ) ;T ≤ t}+ E {f (W (t), t) ;T > t} = f(0, 0). (9.55)

Of course, W (T ) ∈ {−1, 1}. Therefore, if we add to the ODE the conditions
that ψ(±1) = 0, then we obtain

E {f (W (t), t) ;T > t} = f(0, 0). (9.56)

Equivalently, suppose ψ solves the Sturm–Liouville problem: ψ′′ = −2λψ
and ψ(±1) = 0. Then,

E {ψ (W (t)) ;T > t} = e−λtψ(0). (9.57)

The typical solution to the said Sturm–Liouville problem is ψ(x) = cos(1
2
nπx)

where n = 1, 2, . . . (check!). This function solves ψ′′ = −2λψ, ψ(±1) = 0
with λ := 1

8
n2π2. Since ψ(0) = 1, we have

E

{
cos

(
nπW (t)

2

)
;T > t

}
= e−

1
8
n2π2t. (9.58)

Step 2. Fourier Series.
Let L2(−2, 2) denote the collection of all measurable functions g : [−2, 2] → R

such that
∫ 2

−2
g2(x) dx < +∞. Then, Theorem B.1 and a little fidgeting with

the variables shows us that L2(−2, 2) has the following complete orthonormal
basis: 1

2
, 1√

2
sin(1

2
nπx), 1√

2
cos(1

2
mπx) (n,m = 1, 2, . . .). In particular, any

φ ∈ L2(−2, 2) has the representation,

φ(x) =
A0

2
+

1√
2

∞∑
n=1

An cos
(nπx

2

)
+

1√
2

∞∑
n=1

Bn sin
(nπx

2

)
. (9.59)
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In the preceding, the convergence holds in L2(−2, 2), A0 :=
∫ 2

−2
φ(x) dx,

and for all n = 1, 2, 3, . . ., An := 1√
2

∫ 2

−2
φ(x) cos(1

2
nπx) dx, whereas Bn :=

1√
2

∫ 2

−2
φ(x) sin(1

2
nπx) dx.

Step 3. Putting it Together.
Apply Step 2 to the function φ(x) := 1(−1,1)(x) to obtain A0 = 1, An =
23/2(nπ)−1(−1)n+1, and Bn = 0 (n = 1, 2, . . .). Thus,

1(−1,1)(x) =
1

2
+

2

π

∞∑
n=1

(−1)n+1

n
cos
(nπx

2

)
. (9.60)

Plug in x := W (t, ω), multiply by 1{T (ω)>t}, and integrate [P(dω)] to obtain

P {W (t) ∈ (−1, 1) , T > t}

=
1

2
P{T > t}+

2

π

∞∑
n=1

(−1)n+1

n
E

{
cos

(
nπW (t)

2

)
; T > t

}
.

(9.61)

[A word of caution: In a fully-rigorous treatment, we need to justify this
exchange of L2(P)-limit and expectation.] Two quick observations are in
order: The left-hand side equals P{T > t}; this follows from the fact that
{T > t} = {sups≤1 |W (s)| < 1}. The second observation is that the right-
hand side is computable via (9.58). After a little algebra, this completes our
proof. �

The following is a corollary of the proof. It turns out to be the starting-
point of some of the many deep connections between Markov processes and
the boundary-theory of second-order differential equations.

Corollary 9.23 Suppose φ ∈ L2(−2, 2) has the Fourier series representation
(9.59), and φ(±1) = 0; i.e., for all n ≥ 1, Bn = 0. Then for any t ≥ 0,

E {φ (W (t)) ; T > t}

=
2A0

π

∞∑
n=1

(−1)n+1

n
e−

1
8
n2π2t +

1√
2

∞∑
n=1

Ane
− 1

8
n2π2t.

(9.62)

6 Exercises

Exercise 9.1 In this exercise, we construct a Dini-continuous process in
Lp(P) that is not a.s. continuous.
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1. If t > s > 0, then prove that

P {W (s)W (t) < 0} =

∫ ∞

0

e−y2/(2s)

√
2πs

P {W (t− s) > y} dy. (9.63)

2. Prove that P{W (t− s) > y} ≤ e−y2/(2(t−s)).

3. Conclude that P{W (s)W (t) < 0} ≤ 1
2

√
t−s
t

.

4. Use this to prove that H(s) := 1(0,∞)(W (es∧1)) is Dini-continuous in
L2(P), but H is not a.s. continuous.

Exercise 9.2 In this exercise, you are asked to construct a rather general
abstract integral that is due to Young [You70].9.10

A function f : [0, 1] → R is said to be Hölder continuous of order α > 0
if there exists a finite constant K such that for all s, t ∈ [0, 1] |f(s)− f(t)| ≤
K|t− s|α. Let Cα denote the collection of all such functions. When α = 0,
we define C0 to be the collection of all continuous real functions on [0, 1].

1. Prove that when α > 1, Cα contains only constants, whereas C1 in-
cludes but is not limited to all continuously-differentiable functions.

2. If 0 < α < 1, then prove that Cα is a complete normed linear space
that is normed by

‖f‖Cα := sup
s,t∈[0,1]

s 6=t

|f(s)− f(t)|
|s− t|α . (9.64)

3. Given two functions f and g, define for all n ≥ 1,∫ 1

0

f δng :=

2n−1∑
k=0

f

(
k

2n

)
×
[
g

(
k + 1

2n

)
− g

(
k

2n

)]
. (9.65)

Suppose for some α, β ≤ 1, f ∈ Cα and g ∈ Cβ. Prove that whenever
α + β > 1, then

∫ 1

0
f δg := limn

∫ 1

0
f δng exists. Note that when we

let g(x) := x we recover the Riemann integral of f ; i.e., that
∫ 1

0
f δg =∫ 1

0
f(x) dx.

9.10See also McShane [McS69].
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4. Prove that
∫ 1

0
g δf is also well-defined, and verify the following:∫ 1

0

f δg = f(1)g(1)− f(0)g(0)−
∫ 1

0

g δf. (9.66)

The integral
∫
f δg is called the Young integral.

(Hint: Lemma 9.3.)

Exercise 9.3 In this exercise you are asked to prove Theorem 9.13 and its
variants in steps. We say that M is a submartingale if it is defined as a
martingale, except whenever t ≥ s ≥ 0, we have E{M(t) |Fs} ≥ M(s), a.s.
M is a supermartingale if −M is a submartingale. A process M is said to be a
continuous L2-submartingale (respectively, continuous L2-supermartingale)
if it is a submartingale (respectively supermartingale), t 7→ M(t) is a.s.-
continuous, and for all t ≥ 0, M(t) ∈ L2(P).

1. If Y is in L2(P), then prove that M(t) := E{Y |Ft} is a martingale.
(This is the Doob martingale in continuous-time. )

2. If M is a martingale and ψ is convex, then ψ(M) is a submartingale
provided that ψ(M(t)) ∈ L1(P) for each t ≥ 0.

3. If M is a submartingale and ψ is a nondecreasing convex function, and
if ψ(M(t)) ∈ L1(P) for all t ≥ 0, then ψ(M) is a submartingale.

4. Prove that the first inequality in Theorem 9.13 holds if |M | is replaced
by any a.s.-continuous submartingale

(Hint: In the last part, you will need to prove that sup0≤s≤tM(s) is mea-
surable!)

Exercise 9.4 (Gambler’s Ruin Formula) If W denotes a Brownian motion,
then for any a ∈ R, define Ta := inf{s ≥ 0 : W (s) = a} where inf ? := ∞.
Recall that Ta is an F-stopping time (Proposition 8.18). If a, b > 0, then
carefully prove that P{Ta < T−b} = b÷ (a+ b). Finally, compute E{Ta}.
(Hint: Use Corollaries 8.10, 9.18, and Theorem 9.12.)

Exercise 9.5 Prove Corollary 9.22.
(Hint: Use Theorem 9.21 and the scaling property of Brownian motion; cf.
Theorem 8.9.)
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Part IV

Appendices





Appendix A

Hilbert Spaces

Throughout, let H be a set, and recall that it is a (real) Hilbert space if
it is linear and if there exists an inner product 〈·, ·〉 on H × H such that
f 7→ 〈f, f〉 =: ‖f‖2 norms H . We recall that inner product means that for
all f, g, h ∈ H and all α, β ∈ R, we have

〈αf + βg, h〉 = 〈h, αf + βg〉 = α〈f, h〉+ β〈g, h〉. (1.1)

Hilbert spaces come naturally equipped with a notion of angles: If 〈f, g〉 =
0, then f and g are orthogonal.

Definition A.1 Given any subspace S of H , we let S⊥ denote the collection
of all elements of H that are orthogonal to all of the elements of S. That is,
S⊥ := {f ∈ H : 〈f, g〉 = 0, ∀g ∈ S}.

It is easy to see that S⊥ is itself a subspace of H , and that S∩ S⊥ = {0}.
We now show that in fact S and S⊥ have a sort of complementary property.

Theorem A.2 (Orthogonal Decomposition) If S is a subspace of a
complete Hilbert space H , then H = S+ S⊥ := {f + g : f ∈ S , g ∈ S⊥}.

In order to prove this, we need a lemma.

Lemma A.3 If X is a closed and convex subset of a complete Hilbert space
H , then there exists a unique f ∈ X such that ‖f‖ = infg∈X ‖g‖.
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Proof Existence is easy to prove: There exists fn ∈ X such that limn ‖fn‖ =
infh∈X‖h‖. By completeness and closedness, there exists f ∈ X such that
fn → f ∈ X, and since the norm is continuous functional, ‖f‖ = limn ‖fn‖ =
infh∈X‖h‖.

For the uniqueness portion, suppose there were two norm-minimizing
functions f, g ∈ X. Note that ‖f−g‖2 = 2 infh∈X‖h‖2−2〈f, g〉 and ‖f+g‖2 =
2 infh∈X ‖h‖2 + 2〈f, g〉. Multiply both identities by 1

4
and add to obtain:

1

4
‖f − g‖2 = inf

h∈X
‖h‖2 −

∥∥∥∥f + g

2

∥∥∥∥2

≤ 0, (1.2)

since 1
2
(f + g) ∈ X by convexity. This yields the desired uniqueness. �

Proof of Theorem A.2 We are about to define two operators P and
P⊥ that are in fact projection operators onto S and S⊥, respectively. Our
definitions are motivated by well-known facts in linear algebra.

Given any f ∈ H , the set f+S := {f+s : s ∈ S} is closed and convex. In
particular, f+S has a unique element P⊥(f) of minimal norm (Lemma A.3).
We also define P(f) := f − P⊥(f).

Whenever f ∈ H , and because P⊥(f) ∈ f + S, it follows that P(f) ∈ S.
Since P(f) + P⊥(f) = f , it suffices to show that for all f ∈ H , P⊥(f) ∈ S⊥.
But by the definition of P⊥, for all g ∈ S, ‖P⊥(f)‖ ≤ ‖f − g‖. Instead of g
write αg +P(f) where ‖g‖ = 1 (this is in S), where α ∈ R, and deduce that
for all g ∈ S with ‖g‖ = 1 and all α ∈ R,

‖P⊥(f)‖2 ≤ ‖P⊥(f)− αg‖2

= ‖P⊥(f)‖2 − 2α
〈P⊥(f), g

〉
+ α2.

(1.3)

Let α := 〈P⊥(f), g〉 to deduce that for all g ∈ S, 〈P⊥(f), g〉 = 0, which is
the desired result. �

Theorem A.4 To every bounded linear functional L on a complete Hilbert
space H , there corresponds a unique π ∈ H such that for all f ∈ H , L(f) =
〈f, π〉.

Proof I f L(f) = 0 for all f ∈ H , then define π ≡ 0 and we are done. If not,
then S := {f ∈ H : L(f) = 0} is a closed subspace of H that does not span all
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of H , i.e, there exists g ∈ S⊥ with ‖g‖ = 1 and L(g) > 0; this follows from the
decomposition theorem for H (Theorem A.2). We will show that π := gL(g)
is the function that we seek, all the time remembering that L(g) ∈ R. But
this is elementary. For any f ∈ H , consider the function h := L(g)f−L(f)g,
and note that h ∈ S, since L(h) = 0 by design. This means that 〈π, h〉 = 0,
but 〈π, h〉 = L(g)〈π, f〉−L(f)〈π, g〉 = L(g)〈π, f〉−L(g)L(f). Since L(g) > 0,
we have L(f) = 〈f, π〉 for all f ∈ H . It remains to prove uniqueness, but
this too is easy for if there were two of these functions, say π1 and π2, then
for all f ∈ H , 〈f, π1 − π2〉 = 0. In particular, let f := π1 − π2 to see that
π1 = π2. �

1 Exercises

Exercise 1.1 Recall from the proof of Theorem A.2 the operators P and
P⊥, and show that P and P⊥ are linear operators with P : H → S and
P⊥ : H → S⊥. Furthermore, prove that they are projection operators, i.e.,
that whenever f ∈ S then P(f) = f , and whenever f ∈ S⊥, then P⊥(f) = f .
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Appendix B

Fourier Series

Throughout this section, we let T := [−π, π] denote the torus of length 2π,
and consider some elementary facts about the trigonometric Fourier series
on T that are based on the following:

φn(x) :=
einx

√
2π
, ∀x ∈ T, n = 0,±1,±2, . . . . (2.1)

Let L2(T) denote the Hilbert space of all measurable functions f : T → C
such that ‖f‖2

T :=
∫
T
|f(x)|2 dx < +∞. As usual, L2(T) is equipped with the

(semi-)norm ‖f‖T and inner-product 〈f, g〉 :=
∫
T
f(x)g(x) dx. Our goal is to

prove the following theorem.

Theorem B.1 The collection {φn}n∈Z is a complete orthonormal system in
L2(T). Consequently, given any f ∈ L2(T), f =

∑
n〈f, φn〉φn, where the

convergence takes place in L2(T). Furthermore, ‖f‖2
T =

∑
n |〈f, φn〉|2.

The proof is not difficult, but requires some preliminary developments.

Definition B.2 A trigonometric polynomial is a finite linear combination
of the φn’s. An approximation to the identity is a sequence of integrable
functions ψ0, ψ1, . . . : T → R+ such that

1. (i)
∫
T
ψn(x) dx = 1 for all n.

2. (ii) For any ε ∈ (0, π], however small, limn→∞
∫ ε

−ε
ψn(x) dx = 1.
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Note that (a) all the ψn’s are nonnegative; and (b) the preceding display
shows that all of the area under ψn is concentrated near the origin when n is
large. In other words, as n→∞, ψn looks more and more like a point mass.

For n = 0, 1, 2, . . . consider

κn(x) :=
(1 + cos(x))n

αn

, ∀x ∈ T, (2.2)

where αn :=
∫
T
(1 + cos(x))n dx.

Lemma B.3 κ0, κ1, . . . is an approximation to the identity.

Proof I need to only prove part (ii) of Definition B.2. First, note that for
any fixed ε ∈ (0, π],∫ π

ε

(1 + cos(x))n dx ≤ 2π(1 + cos(ε))n. (2.3)

By symmetry, this estimates the integral away from the origin. To estimate
the integral near the origin, we use a method of P.-S. Laplace and write∫ ε

0
(1+cos(x))n dx =

∫ ε

0
eng(x) dx, where g(x) := ln(1+cos(x)). Apply Taylor’s

theorem with remainder to deduce that for any x ∈ [0, ε], there exists ζ ∈
[0, x] such that

g(x) = g(0) + g′(0)x+
1

2
g′′(ζ)x2

= ln(2)−
(

x

1 + cos(ζ)

)2

≥ ln(2)−
(

x

1 + cos(ε)

)2

.
(2.4)

Thus, ∫ ε

0

(1 + cos(x))n dx ≥ 2n

∫ ε

0

exp

(
− nx2

(1 + cos(ε))2

)
dx

=
2n

√
n

∫ √
n ε

0

exp

(
− z2

(1 + cos(ε))2

)
dz

≥ Aε
2n

√
n
, ∀n ≥ 1,

(2.5)

where Aε :=
∫ ε

0
exp{−z2(1 + cos(ε))−2} dz. In particular, αn ≥ 2Aεn

−1/22n,
which is many orders of magnitude larger than

∫
ε≤|x|≤π

(1+cos(x))n dx, thanks

to (2.3). This proves the lemma. �
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Proposition B.4 If f ∈ L2(T) and ε > 0, then there is a trigonometric
polynomial T such that ‖T − f‖T ≤ ε.

In other words, trigonometric polynomials are dense in L2(T).

Proof Since continuous functions (endowed with uniform topology) are
dense in L2(T) it suffices to prove that trigonometric polynomials are dense
in the space of all continuous function on T (why?). We first of all observe
that the functions κn are trigonometric polynomials. Indeed, by the binomial
theorem,

κn(x) =
1

αn

n∑
k=0

(
n

k

)
(cos(x))k =

1

αn

n∑
k=0

(
n

k

)(
eix + e−ix

2

)k

=
1

αn

n∑
k=0

(
n

k

)
2−k

k∑
l=0

(
k

l

)
eix(2l−k),

(2.6)

which is clearly a linear combination of φ−n(x), . . . , φn(x). Having established
this, note that the convolution of κn and f is also a trigonometric polynomial,
where the said convolution is the function

κn ? f(x) :=

∫
T

f(y)κn(x− y) dy. (2.7)

[This is a trigonometric polynomial since we can write κn(x) =
∑n

j=−n cjφj(x),

from which we get κn?f(x) =
∑n

j=−n qjφj(x), where qj := cj
∫
T
f(y)e−iny dy.]

Now fix ε ∈ (0, π) and consider

|κn ? f(x)− f(x)|
=

∣∣∣∣∫ ε

−ε

[f(y)− f(x)] κn(y − x) dy

∣∣∣∣
≤
∫

y∈T:
|y−x|≤ε

|f(x)− f(y)|κn(y − x) dy

+ 2 sup
w∈T

|f(w)| ·
∫

y∈T:
|y−x|>ε

κn(y − x) dy

≤ sup
y,u∈T:
|y−u|≤ε

|f(y)− f(u)|+ 2 sup
w∈T

|f(w)| ·
∫

ε≤|z|≤π

κn(z) dz.

(2.8)
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[The first line follows from
∫
T
κn(x) dx = 1, the second from κn(a) ≥ 0, and

the third from both of the said properties of κn.] The third property of
being an approximation to the identity shows that as n → ∞ the last term
vanishes, and we obtain the following: For all ε > 0,

lim sup
n→∞

sup
x∈T

|κn ? f(x)− f(x)| ≤ sup
y,u∈T:
|y−u|≤ε

|f(y)− f(u)| . (2.9)

Let ε → 0 to see that the left-hand side is zero, whence the proposition
follows. �

We are ready to prove Theorem B.1.

Proof of Theorem B.1 It is easy to see that {φn}n∈Z is an orthonormal
sequence in L2(T); i.e., that 〈φn, φm〉 equals one if n = m and zero otherwise.
To prove its completeness, suppose that f ∈ L2(T) is orthogonal to all φn’s;
i.e., 〈f, φn〉 = 0 for all n ∈ Z. If ε and T are as in the preceding proposition,
then: (i) 〈f, T 〉 = 0; and (ii) ‖f − T‖2

T ≤ 2π supw |f(w) − T (w)| ≤ 2πε.
But ‖f − T‖2

T = ‖f‖2
T + ‖T‖2

T− 2〈f, T 〉 ≥ ‖f‖2
T by (ii). Since ε is arbitrary,

‖f‖T = 0 from which we deduce that f = 0, almost everywhere. This proves
completeness. The remainder is easy to prove but requires the material from
Section A of Chapter 4.

Let Pn and P⊥
n respectively denote the projections onto Sn := the linear

span of {φj; |j| ≤ n} and S⊥n . If f ∈ L2(T), then Pnf is the a.e. unique
function g ∈ Sn that minimizes ‖f − g‖T. We can write g =

∑
|j|≤n cjφj

and expand the said L2-norm to obtain the following optimization problem:
Minimize over all {cj},∥∥∥∥∥∥f −

∑
|j|≤n

cjφj

∥∥∥∥∥∥
2

T

= ‖f‖2
T+

∑
|j|≤n

c2j − 2
∑
|j|≤n

cj〈f, φj〉. (2.10)

This is a calculus exercise and yields the optimal value of cj := 〈f, φj〉.
Thus, Pnf =

∑
|j|≤n〈f, φj〉φj, P⊥

n f = f − Pnf , ‖Pnf‖2
T =

∑
|j|≤n |〈f, φj〉|2,

and ‖P⊥
n f‖2

T = ‖f‖2
T −

∑
|j|≤n |〈f, φj〉|2. The last inequality in turn yields

Bessel’s inequality :
∞∑

j=−∞
|〈f, φj〉|2 ≤ ‖f‖2

T. (2.11)
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Our goal is to show that this is sharp. If not, then ‖ lim infn→∞P⊥
n f‖T > 0

(Fatou’s lemma, Theorem 2.20). In particular, g := lim infn P⊥
n f is not

zero almost everywhere. But note that g ∈ P⊥
n for all n. Thus, the pre-

ceding proposition shows that g = 0 almost everywhere, which is the de-
sired contradiction. [To see this fix ε > 0 and find a trigonometric poly-
nomial T ∈ Sn for some large n such that ‖g − T‖T ≤ ε. Now expand
ε2 ≥ ‖g − T‖2

T = ‖g‖2
T + ‖T‖2

T − 2〈g, T 〉 = ‖g‖2
T + ‖T‖2

T ≥ ‖g‖2
T.] In

fact, this argument shows that any subsequential limit of P⊥
n f must be

zero almost everywhere, and hence P⊥
n f → 0 in L2(T), from which we get

f = limnPnf =
∑

j〈f, φj〉φj (in L2(T)) as desired. �
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le calcul des probabilités, Comm. Soc. Math. Kharkow 13 (1912/1913),
1–2.
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[Lév37] P. Lévy, Théorie de l’Addition des Variables Aleatoires, Gauthier–
Villars, Paris, 1937.
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formula, 194, 196
integral, 179

indefinite, 184
under Dini-continuity, 183

isometry, 183
lemma, see Itô formula
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