Math 6070-1, Spring 2006, University of Utah Solutions to Project #3 [Theoretical Portion]

2. Suppose $\{X_t\}_{t=1}^{\infty}$ is a stationary time series with mean $\mu := 0$ and autocovariance function γ . Choose and fix two integer times S < T. Suppose we wish to estimate X_T based on X_S alone. We wish to use a linear estimator. That is, one of the type $\alpha X_S + \beta$. Find estimates for α and β that are optimal in the sense that they minimize the mean-squared error.

Solution: Hereforth, let h := T - S denote the lag. The MSE is

$$M(\alpha, \beta) := E\left[(X_T - \alpha X_S - \beta)^2 \right]$$
$$= E\left[(X_h - \alpha X_0 - \beta)^2 \right],$$

by stationarity. Because $E(X_t) = 0$, and $Cov(X_s, X_t) = \gamma(t - s)$ for all s, t, we can expand the previous display to find that

$$M(\alpha,\beta) = E(X_h^2) + \left\{ E\left[\left(\alpha X_0 + \beta\right)^2 \right] \right\} - 2E\left[X_h \left(\alpha X_0 + \beta\right) \right]$$
$$= \gamma(0) + \alpha^2 \gamma(0) + \beta^2 - 2\alpha \gamma(h).$$

Differentiate to find that

$$rac{\partial M(lpha\,,eta)}{\partial lpha}=2lpha\gamma(0)-2\gamma(h) \qquad ext{and} \qquad rac{\partial M(lpha\,,eta)}{\partial eta}=2eta.$$

Set both to zero to find the "normal equations" for $\hat{\alpha}$ and $\hat{\beta}$. They are:

$$\hat{\alpha} = rac{\gamma(h)}{\gamma(0)} \quad ext{and} \quad \hat{\beta} = 0.$$

So the best linear estimator of X_T based solely on X_S is

$$\widehat{X_T} := \frac{\gamma(T-S)}{\gamma(0)} X_S.$$

- **3.** Let $\{W_t\}_{t=-\infty}^{\infty}$ be a white noise process with variance σ^2 . Suppose $|\phi| < 1$, and define $X_1 := W_1, X_2 := \phi X_1 + W_2, X_3 := \phi X_2 + W_3, \ldots, X_n := \phi X_{n-1} + W_n \ldots$
 - (a) Prove that $\{X_t\}_{t=1}^{\infty}$ is not stationary. [Hint: It is not even weakly stationary.]

Solution: (a) Recall first that $E(W_t) = 0$, $Cov(W_s, W_t) = 0$ if $s \neq t$, and $Var(W_t) = \sigma^2$ for all t. Next, we solve for the X_n 's:

$$\begin{aligned} X_n &= \phi X_{n-1} + W_n = \phi \left(\phi X_{n-2} + W_{n-1} \right) + W_n \\ &= \phi^2 X_{n-2} + \phi W_{n-1} + W_n \\ &= \phi^2 \left(\phi X_{n-3} + W_{n-2} \right) + \phi W_{n-1} + W_n \\ &= \phi^3 X_{n-3} + \phi^2 W_{n-2} + \phi W_{n-1} + W_n \\ &\vdots \\ &= \phi^k X_{n-k} + \sum_{j=0}^{k-1} \phi^j W_{n-j}. \end{aligned}$$

Choose k := n to find that for all $n \ge 1$,

$$X_n = \frac{1}{1 - \phi^n} \sum_{j=0}^{n-1} \phi^j W_{n-j}.$$

Consequently, $E(X_n) = 0$ for all $n \ge 1$. But this is a far cry from weak stationarity. For instance, because the W_j 's are uncorrelated,

$$\operatorname{Var}(X_n) = \frac{1}{\left(1 - \phi^n\right)^2} \sum_{j=0}^{n-1} \phi^{2j} \sigma^2 = \frac{1 - \phi^{2n}}{\left(1 - \phi^n\right)^2 \left(1 - \phi\right)} \sigma^2.$$

As this depends on n, $\{X_n\}_{n=1}^{\infty}$ cannot be weakly stationary.

(b) Prove that nonetheless $\{X_t\}_{t=1}^{\infty}$ is "asymptotically weakly stationary," in the sense that $\gamma_0(h) := \lim_{t \to \infty} \text{Cov}(X_t, X_{t+h})$ exists for all $h \ge 0$. Compute the said limit.

Solution: Because $E(X_n) = 0$, for all $t, h \ge 1$,

$$\operatorname{Cov}(X_t, X_{t+h}) = \frac{1}{(1 - \phi^t)(1 - \phi^{t+h})} E\left[\sum_{i=0}^{t-1} \phi^i W_{t-i} \times \sum_{j=0}^{t+h-1} \phi^j W_{t+h-j}\right].$$

But $[W_{t-i}W_{t+h-j}] = 0$ unless j = i + h. Therefore,

$$\operatorname{Cov}(X_t, X_{t+h}) = \frac{1}{(1 - \phi^t)(1 - \phi^{t+h})} \sum_{i=0}^{t-1} \phi^i \phi^{i+h} \sigma^2$$
$$= \frac{\sigma^2 \phi^h}{(1 - \phi^t)(1 - \phi^{t+h})} \sum_{i=0}^{t-1} \phi^{2i}$$
$$\longrightarrow \frac{\sigma^2 \phi^h}{1 - \phi^2} \quad \text{as } t \to \infty.$$

Thus, $\gamma_0(h) = \sigma^2 \phi^h / (1 - \phi^2).$

(c) [Hard] What happens if $|\phi| \ge 1$?

Solution: First consider the case $\phi = 1$. In this case,

$$X_t = X_{t-1} + W_t = X_{t-2} + W_{t-1} + W_t = \dots = \sum_{j=1}^t W_j.$$

This is obviously not a stationary process. For instance, although $E(X_t) = 0$ for all $t \ge 1$, we have $\operatorname{Var}(X_t) = t\sigma^2$. If $\phi = -1$, then

$$X_t = -X_{t-1} + W_t = -X_{t-2} - W_{t-1} + W_t = \dots = \sum_{j=1}^t (-1)^j W_j.$$

Therefore, $\operatorname{Var}(X_t) = t\sigma^2$, whence follows the non-stationarity of $\{X_t\}_{t=1}^{\infty}$.

If $|\phi| > 1$, then one can still solve for X_t explicitly. But we can simply note that

$$X_t^2 = \phi^2 X_{t-1}^2 + W_t^2 + 2\phi X_{t-1} W_t,$$

and so (why?),

$$Var(X_t) = E(X_t^2) = \phi^2 E(X_{t-1}^2) + \sigma^2 \ge \phi^2 E(X_{t-1}^2)$$

$$\ge \phi^4 E(X_{t-2}^2) \ge \cdots \phi^{2k} E(X_{t-k}^2) \ge \cdots$$

$$> \phi^{2(t-1)} \sigma^2.$$

Because $|\phi| > 1$, this proves that $\lim_{t\to\infty} \operatorname{Var}(X_t) = \infty$. In particular, $\{X_t\}_{t=1}^{\infty}$ cannot be weakly stationary.