Math 6070-1, Spring 2006, University of Utah Project \#1
 Due: Friday, February 15

Our goal is to simulate a table of binomial probabilities. You are asked to work individually (i.e., not in groups!) on this project. You can use any reasonable computer package, but: (i) must show all of your code; (ii) the code must be well documented; and (iii) cannot use canned packages. In other words, if you are asked to generate a table of probabilities, you cannot run some package that does that for you.

Suppose $S_{n} \sim \operatorname{Binomial}(n, p)$, and define $\hat{p}=S_{n} / n$. Define

$$
\mathcal{B}_{n, p}(z):=\mathrm{P}_{p}\left\{\left|\frac{\hat{p}-p}{\sqrt{\hat{p}(1-\hat{p}) / n}}\right| \leq z\right\} .
$$

1. Let $\rho_{1}, \rho_{2}, \ldots, \rho_{m}$ be independent, each with the same distribution as \hat{p} under P_{p} for every p. Define

$$
\hat{\mathcal{B}}_{n, p}(z, m):=\frac{1}{m} \sum_{j=1}^{m} \mathbf{I}\left\{\left|\frac{\rho_{j}-p}{\sqrt{\rho_{j}\left(1-\rho_{j}\right) / n}}\right| \leq z\right\}
$$

Then prove that as $m \rightarrow \infty$,

$$
\hat{\mathcal{B}}_{n, p}(z, m) \xrightarrow{\mathrm{P}_{p}} \mathcal{B}_{n, p}(z) .
$$

2. For all $p=0.1,0.2,0.3,0.4,0.5$, and all $n=5,10,15,20$ generate $\rho_{1}, \ldots, \rho_{m}$ i.i.d. with distribution $\operatorname{binomial}(n, p)$. Use this to produce a table for $\mathcal{B}_{n, p}(z)$ for $z=$ $1.5,2,2.5,3,3.5$. Pay attention to what happens as you vary m, and try to compute tables that have a good amount of precision.
3. Prove that $\mathcal{B}_{\infty}(z)=\lim _{n \rightarrow \infty} \mathcal{B}_{n, p}(z)$ exists and is independent of p. Identify $\mathcal{B}_{\infty}(z)$, and create a table of values for $\mathcal{B}_{\infty}(z)$ for $p=0.1,0.2,0.3,0.4,0.5, n=5,10,15,20$, and $z=1.5,2,2.5,3,3.5$.
4. Compare your table for $\mathcal{B}_{\infty}(z)$'s with your table from Item 2. Use your table to find exact $z_{\alpha / 2}$-values for $\alpha=0.01,0.05$. Compare your values with the $z_{\alpha / 2}$-values obtained from a normal table.
5. How would you construct a table for $p=0.6,0.7,0.8,0.9$?
