Math 6070-1, Spring 2006, University of Utah Project #3 Due: Monday May 1

- [Applied Problem] Recall the body fat data set. It can be found at (www.math.utah.edu/~davar/math6070/S06/Projects/Proj2/bodyfat.txt).
 - (a) Find the kernel density estimate based on a $N(0, \sigma^2)$ kernel, where σ^2 is unknown. Do this for two or three different values of bandwidths h that are chosen with theoretical considerations in mind.
 - (b) Find the kernel density estimate based on a double exponential kernel of the type $K(x) = (2\eta)^{-1} \exp(-|x|/\eta)$, where η is unknown. Do this for two or three different values of bandwidths h that are chosen with theoretical considerations in mind.
 - (c) Compare your results to the result(s) of the command "density" supplied by R.
- 2. [Theoretical Problem] Suppose $\{X_t\}_{t=1}^{\infty}$ is a stationary time series with mean $\mu := 0$ and autocovariance function γ . Choose and fix two integer times S < T. Suppose we wish to estimate X_T based on X_S alone. We wish to use a *linear estimator*. That is, one of the type $\alpha X_S + \beta$. Find estimates for α and β that are optimal in the sense that they minimize the mean-squared error.
- **3.** [Theoretical Problem] Let $\{W_t\}_{t=-\infty}^{\infty}$ be a white noise process with variance σ^2 . Suppose $|\phi| < 1$, and define $X_1 := W_1$, $X_2 := \phi X_1 + W_2$, $X_3 := \phi X_2 + W_3$, ..., $X_n := \phi X_{n-1} + W_n \dots$
 - (a) Prove that $\{X_t\}_{t=1}^{\infty}$ is not stationary. [Hint: It is not even weakly stationary.]
 - (b) Prove that nonetheless $\{X_t\}_{t=1}^{\infty}$ is "asymptotically weakly stationary," in the sense that $\gamma_0(h) := \lim_{t\to\infty} \operatorname{Cov}(X_t, X_{t+h})$ exists for all $h \ge 0$. Compute the said limit.
 - (c) [Hard] What happens if $|\phi| \ge 1$?