Homework #3 Math 6070-1, Spring 2006

1. Consider a probability density kernel K of the form

$$K(x) = \frac{1}{2\tau} e^{-|x|/\tau}, \qquad -\infty < x < \infty.$$

Here, $\tau > 0$ is fixed. Assuming that f is sufficiently smooth, then derive the form of the asymptotically optimal bandwidth h_n in the same manner as we did in the lectures for the case $\tau = 1$. The extra parameter τ is often used to refine kernel-density estimates that are based on the doubleexponential family.

- 2. Construct continuous probability densities f_1, f_2, \ldots and f such that:
 - (a) $\lim_{n \to \infty} \int_{-\infty}^{\infty} |f_n(x) f(x)| \, dx = 0$; and
 - (b) there exist infinitely-many values of x such that $f_n(x) \not\rightarrow f(x)$ as $n \rightarrow \infty$.

Thus, convergence in L^1 is not the same as ordinary (pointwise) convergence.

- 3. Prove that if f and g are probability densities, then $\mathscr{F}(f*g)(t) = (\mathscr{F}f)(t) \times (\mathscr{F}g)(t)$ for all t. Use this to prove that if f is a probability density and ϕ_{ϵ} is the $N(0, \epsilon^2)$ density, then $f*\phi_{\epsilon}$ has an integrable Fourier transform.
- 4. Let X_1, X_2, \ldots be an i.i.d. sample from a density function f. We assume that f is differentiable in an open neighborhood V of a fixed point x, and $B := \max_{z \in V} |f'(z)| < \infty$.
 - (a) Prove that for all $\lambda > 0$, $m \ge 1$, and all $x \in \mathbf{R}$,

$$\mathbf{P}\left\{\min_{1\leq j\leq m}|X_j-x|\geq \lambda\right\} = \left[1-\int_{x-\lambda}^{x+\lambda}f(z)\,dz\right]^m.$$

(b) Prove that for all $\epsilon > 0$ small enough,

$$\max_{z \in [x-\epsilon, x+\epsilon]} |f(x) - f(z)| \le 2B\epsilon.$$

Use this to estimate $|\int_{x-\epsilon}^{x+\epsilon} f(z) dz - 2\epsilon f(x)|.$

(c) Suppose that as $m \to \infty$, $\lambda_m \to \infty$ and $\lambda_m^2/m \to 0$. Then, prove that

$$\lim_{m \to \infty} \frac{-1}{2\lambda_m} \ln \mathbb{P}\left\{\min_{1 \le j \le m} |X_j - x| \ge \frac{\lambda_m}{m}\right\} = f(x).$$

(d) Devise an estimator of f(x) based on the previous steps.