Homework #2 Math 6070-1, Spring 2006

Let X_1, X_2, \ldots, X_n be random variables, all i.i.d., and with the same distribution function F that has density f := F'. Define for all $p \ge 1$,

$$Q_n^{(p)}(F) := \left\{ \int_{-\infty}^{\infty} \left| \hat{F}_n(x) - F(x) \right|^p f(x) \, dx \right\}^{1/p}.$$

This is a kind of "distance" between \hat{F}_n and F, although it is different from $D_n(F)$.

- 1. Prove that $Q_n^{(p)}(F) \leq 2$, so $Q_n^{(p)}(F)$ is always finite.
- 2. Compute $Q_n^{(p)}(F_u)$ where $F_u(x) = x$ for $0 \le x \le 1$, $F_u(x) = 0$ if x < 0, and $F_u(x) = 1$ if $x \ge 1$.
- 3. Prove that $Q_n^{(p)}(F)$ is distribution-free. That is, if F and G are strictly increasing distribution functions such that F' and G' both exist, then the distribution of $Q_n^{(p)}(F)$ is the same as that of $Q_n^{(p)}(G)$.
- 4. Prove that under F, as $n \to \infty$, $Q_n^{(p)}(F) \xrightarrow{\mathbf{P}} 0$, provided that F is strictly increasing and has a density. Do this by first proving that

$$\mathbf{E}_F\left[\left|Q_n^{(2)}(F)\right|^2\right] = \frac{1}{6n}$$

5. Suppose F is strictly increasing has a density. Then provide a heuristic justification of the fact that, under F, as $n \to \infty$,

$$\sqrt{n} \ Q_n^{(p)}(F) \xrightarrow{d} \left\{ \int_0^1 |B^\circ(x)|^p \ dx \right\}^{1/p},$$

where B° denotes the Brownian bridge on [0, 1]. Later on in a Project we will see how to simulate the distribution of the latter limiting object.

- 6. Use 4 to test H_0 : $F = F_0$ versus H_1 : $F \neq F_0$ for a known distribution function F_0 that is strictly increasing and has a density.
- 7. Suppose F has a density f which satisfies f(x) > 0 for all x. Then prove that F is strictly increasing.