Solutions to Homework \#3 Math 6070-1, Spring 2006

1. Consider a probability density kernel K of the form

$$
K(x)=\frac{1}{2 \tau} e^{-|x| / \tau}, \quad-\infty<x<\infty
$$

Here, $\tau>0$ is fixed. Assuming that f is sufficiently smooth, then derive the form of the asymptotically optimal bandwidth h_{n} in the same manner as we did in the lectures for the case $\tau=1$. The extra parameter τ is often used to refine kernel-density estimates that are based on the doubleexponential family.
Solution: We compute $\beta_{K}, \sigma_{K}^{2}$, and $\|K\|_{2}^{2}$ and plug.
Note that

$$
\|K\|_{2}^{2}=\frac{1}{4 \tau^{2}} \int_{-\infty}^{\infty} e^{-2|x| / \tau} d x=\frac{1}{4 \tau}
$$

Next, we have

$$
\sigma_{K}^{2}=\frac{1}{2 \tau} \int_{-\infty}^{\infty} x^{2} e^{-|x| / \tau} d x=\tau^{2} \int_{0}^{\infty} x^{2} e^{-x} d x=\Gamma(3) \tau^{2}=2 \tau^{2}
$$

Finally,

$$
\beta_{K}=\frac{\|K\|_{2}^{2 / 5}}{\sigma_{K}^{4 / 5}}=\frac{(1 /(4 \tau))^{1 / 5}}{\left(2 \tau^{2}\right)^{2 / 5}}=\frac{1}{16^{1 / 5} \tau}
$$

2. Construct continuous probability densities f_{1}, f_{2}, \ldots and f such that:
(a) $\lim _{n \rightarrow \infty} \int_{-\infty}^{\infty}\left|f_{n}(x)-f(x)\right| d x=0$; and
(b) there exist infinitely-many values of x such that $f_{n}(x) \nrightarrow f(x)$ as $n \rightarrow \infty$.

Solution: I will do a little more and produce a "fancy" counter-example. Namely, I will construct examples of densities f, f_{1}, f_{2}, \ldots such that: (i) $\lim _{n \rightarrow \infty} \int_{-\infty}^{\infty}\left|f_{n}(x)-f(x)\right| d x=0$; and yet (ii) for all rational numbers r, $\lim _{n \rightarrow \infty}\left|f_{n}(r)-f(r)\right|=\infty$.
Because rationals are countable we can label them. So let μ_{1}, μ_{2}, \ldots be an enumeration of all rational numbers. Also, let $\left\{\epsilon_{n}\right\}_{n=1}^{\infty}$ be a sequence of positive numbers such that: (i) $1 / \epsilon_{n}^{1 / 4}$ is a positive integer; and (ii) $\lim _{n \rightarrow \infty} \epsilon_{n}=0$. For example, you can set $\epsilon_{n}:=n^{-4}$ if you would like. Define for all $i, n \geq 1$,

$$
\phi_{i, n}(x):=\frac{1}{\epsilon_{n} \sqrt{2 \pi}} \exp \left(-\frac{\left(x-\mu_{i}\right)^{2}}{2 \epsilon_{n}^{2}}\right)
$$

Define f to be an arbitrary density such that $0 \leq f(x)<\infty$ for all $x \in \mathbf{R}$. And for all $n \geq 1$ define

$$
f_{n}(x)=\left(1-\epsilon_{n}^{1 / 4}\right) f(x)+\epsilon_{n}^{1 / 2} \sum_{i=1}^{1 / \epsilon_{n}^{1 / 4}} \phi_{i, n}(x)
$$

Check that $f_{n}(x) \geq 0$ and $\int_{-\infty}^{\infty} f_{n}(x) d x=1$. So each f_{n} is a density function. Moreover, the triangle inequality implies that

$$
\left|f_{n}(x)-f(x)\right| \leq \epsilon_{n}^{1 / 4} f(x)+\epsilon_{n}^{1 / 2} \sum_{i=1}^{1 / \epsilon_{n}^{1 / 4}} \phi_{i, n}(x)
$$

Therefore,

$$
\int_{-\infty}^{\infty}\left|f_{n}(x)-f(x)\right| d x \leq 2 \epsilon_{n}^{1 / 4} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

But we can note that for all i fixed, if $n \geq i$ then

$$
f_{n}\left(\mu_{i}\right) \geq \epsilon_{n}^{1 / 2} \phi_{i, n}\left(\mu_{i}\right)=\frac{1}{\sqrt{2 \pi \epsilon_{n}}} \rightarrow \infty, \quad \text { as } n \rightarrow \infty
$$

3. Prove that if f and g are probability densities, then $\mathscr{F}(f * g)(t)=(\mathscr{F} f)(t) \times$ $(\mathscr{F} g)(t)$ for all t. Use this to prove that if f is a probability density and ϕ_{ϵ} is the $N\left(0, \epsilon^{2}\right)$ density, then $f * \phi_{\epsilon}$ has an integrable Fourier transform.
Solution: Compute directly to find that

$$
\begin{aligned}
\mathscr{F}(f * g)(t) & =\int_{-\infty}^{\infty} e^{i t x}(f * g)(x) d x \\
& =\int_{-\infty}^{\infty} e^{i t x}\left(\int_{-\infty}^{\infty} f(y) g(x-y) d y\right) d x \\
& =\int_{-\infty}^{\infty}\left(\int_{-\infty}^{\infty} e^{i t(x-y)} g(x-y) d x\right) e^{i t y} f(y) d y \\
& =(\mathscr{F} f)(t) \times(\mathscr{F} g)(t)
\end{aligned}
$$

Recall that $\left(\mathscr{F} \phi_{\epsilon}\right)(t)=e^{-t^{2} \epsilon^{2} / 2}$. Because $|(\mathscr{F} f)(t)| \leq 1$, it follows that $\left|\mathscr{F}\left(f * \phi_{\epsilon}\right)(t)\right| \leq e^{-t^{2} \epsilon^{2} / 2}$, which is integrable. In fact,

$$
\int_{-\infty}^{\infty}\left|\mathscr{F}\left(f * \phi_{\epsilon}\right)(t)\right| d t \leq \int_{-\infty}^{\infty} e^{-t^{2} \epsilon^{2} / 2} d t=\frac{\sqrt{2 \pi}}{\epsilon}<\infty
$$

4. Let X_{1}, X_{2}, \ldots be an i.i.d. sample from a density function f. We assume that f is differentiable in an open neighborhood V of a fixed point x, and $B:=\max _{z \in V}\left|f^{\prime}(z)\right|<\infty$.
(a) Prove that for all $\lambda>0, m \geq 1$, and all $x \in \mathbf{R}$,

$$
\mathrm{P}\left\{\min _{1 \leq j \leq m}\left|X_{j}-x\right| \geq \lambda\right\}=\left[1-\int_{x-\lambda}^{x+\lambda} f(z) d z\right]^{m}
$$

Solution: By independence,

$$
\mathrm{P}\left\{\min _{1 \leq j \leq m}\left|X_{j}-x\right| \geq \lambda\right\}=\left[\mathrm{P}\left\{\left|X_{1}-x\right| \geq \lambda\right\}\right]^{m}
$$

Compute the latter probability to finish.
(b) Prove that for all $\epsilon>0$ small enough,

$$
\max _{z \in[x-\epsilon, x+\epsilon]}|f(x)-f(z)| \leq 2 B \epsilon .
$$

Use this to estimate $\left|\int_{x-\epsilon}^{x+\epsilon} f(z) d z-2 \epsilon f(x)\right|$.
Solution: Apply Taylor's expansion with remainder to find that $|f(x)-f(z)| \leq B|x-z|$ whenever $z \in V$. This implies the first claim. For the second claim we note that by the triangle inequality,

$$
\left|\int_{x-\epsilon}^{x+\epsilon} f(z) d z-2 \epsilon f(x)\right| \leq \int_{x-\epsilon}^{x+\epsilon}|f(z)-f(x)| d x
$$

Apply the first claim to deduce that this is at most $4 B \epsilon^{2}$.
(c) Suppose that as $m \rightarrow \infty, \lambda_{m} \rightarrow \infty$ and $\lambda_{m}^{2} / m \rightarrow 0$. Then, prove that

$$
\lim _{m \rightarrow \infty} \frac{-1}{2 \lambda_{m}} \ln \mathrm{P}\left\{\min _{1 \leq j \leq m}\left|X_{j}-x\right| \geq \frac{\lambda_{m}}{m}\right\}=f(x)
$$

Solution: According to part (a) we can write

$$
\mathrm{P}\left\{\min _{1 \leq j \leq m}\left|X_{j}-x\right| \geq \frac{\lambda_{m}}{m}\right\}=\left[1-\int_{x-\left(\lambda_{m} / m\right)}^{x+\left(\lambda_{m} / m\right)} f(z) d z\right]^{m}
$$

Apply (b) to find that

$$
\mathrm{P}\left\{\min _{1 \leq j \leq m}\left|X_{j}-x\right| \geq \frac{\lambda_{m}}{m}\right\}=\left[1-\frac{2 \lambda_{m}}{m} f(x)+\delta_{m}\right]^{m}
$$

where $\left|\delta_{m}\right| \leq 4 B\left(\lambda_{m} / m\right)^{2}$. Now recall that for $\eta>0$ small,

$$
\ln (1-\eta)=-\eta+\frac{1}{2} \eta^{2}-\frac{1}{3} \eta^{3} \pm \cdots
$$

Thus,

$$
\left[1-\frac{2 \lambda_{m}}{m} f(x)+\delta_{m}\right]^{m}=e^{-2 \lambda_{m} f(x)+m \delta_{m} \pm \cdots}
$$

Because $\lambda_{m}^{2} / m \rightarrow 0$, it follows that $\left(m \delta_{m}+\cdots\right) \rightarrow 0$ as $m \rightarrow \infty$. The assertion follows.
(d) Devise an estimator of $f(x)$ based on the previous steps.

Solution: Choose and fix an enormous integer $m \geq 1$. Our goal is to estimate

$$
\theta_{m}:=\frac{-1}{2 \lambda_{m}} \ln \mathrm{P}\left\{\min _{1 \leq j \leq m}\left|X_{j}-x\right| \geq \frac{\lambda_{m}}{m}\right\} .
$$

Choose and fix a massively large integer $n \geq 1$. Simulate n copies of $\left(X_{1}, \ldots, X_{m}\right)$. Say $\left(X_{1}^{1}, \ldots, X_{m}^{1}\right)$ through $\left(X_{1}^{n}, \ldots, X_{m}^{n}\right)$. Then by the law of large numbers, as $n \rightarrow \infty$,

$$
\hat{\theta}_{m, n}:=\frac{-1}{2 \lambda_{m}} \ln \left(\frac{1}{n} \sum_{\ell=1}^{n} \mathrm{I}\left\{\min _{1 \leq j \leq m}\left|X_{j}^{\ell}-x\right| \geq \frac{\lambda_{m}}{m}\right\}\right) \xrightarrow{\mathrm{P}} \theta_{m}
$$

