
Solutions to Homework #3
Math 6070-1, Spring 2006

1. Consider a probability density kernel K of the form

K(x) =
1
2τ

e−|x|/τ , −∞ < x < ∞.

Here, τ > 0 is fixed. Assuming that f is sufficiently smooth, then derive
the form of the asymptotically optimal bandwidth hn in the same manner
as we did in the lectures for the case τ = 1. The extra parameter τ is
often used to refine kernel-density estimates that are based on the double-
exponential family.

Solution: We compute βK , σ2
K , and ‖K‖22 and plug.

Note that
‖K‖22 =

1
4τ2

∫ ∞

−∞
e−2|x|/τ dx =

1
4τ

.

Next, we have

σ2
K =

1
2τ

∫ ∞

−∞
x2e−|x|/τ dx = τ2

∫ ∞

0

x2e−x dx = Γ(3)τ2 = 2τ2.

Finally,

βK =
‖K‖2/5

2

σ
4/5
K

=
(1/(4τ))1/5

(2τ2)2/5
=

1
161/5τ

.

2. Construct continuous probability densities f1, f2, . . . and f such that:

(a) limn→∞
∫∞
−∞ |fn(x)− f(x)| dx = 0; and

(b) there exist infinitely-many values of x such that fn(x) 6→ f(x) as
n →∞.

Solution: I will do a little more and produce a “fancy” counter-example.
Namely, I will construct examples of densities f, f1, f2, . . . such that: (i)
limn→∞

∫∞
−∞ |fn(x)− f(x)| dx = 0; and yet (ii) for all rational numbers r,

limn→∞ |fn(r)− f(r)| = ∞.

Because rationals are countable we can label them. So let µ1, µ2, . . . be
an enumeration of all rational numbers. Also, let {εn}∞n=1 be a sequence
of positive numbers such that: (i) 1/ε

1/4
n is a positive integer; and (ii)

limn→∞ εn = 0. For example, you can set εn := n−4 if you would like.
Define for all i, n ≥ 1,

φi,n(x) :=
1

εn

√
2π

exp
(
− (x− µi)2

2ε2n

)
.



Define f to be an arbitrary density such that 0 ≤ f(x) < ∞ for all x ∈ R.
And for all n ≥ 1 define

fn(x) =
(
1− ε1/4

n

)
f(x) + ε1/2

n

1/ε1/4
n∑

i=1

φi,n(x).

Check that fn(x) ≥ 0 and
∫∞
−∞ fn(x) dx = 1. So each fn is a density

function. Moreover, the triangle inequality implies that

|fn(x)− f(x)| ≤ ε1/4
n f(x) + ε1/2

n

1/ε1/4
n∑

i=1

φi,n(x).

Therefore, ∫ ∞

−∞
|fn(x)− f(x)| dx ≤ 2ε1/4

n → 0 as n →∞.

But we can note that for all i fixed, if n ≥ i then

fn(µi) ≥ ε1/2
n φi,n(µi) =

1√
2πεn

→∞, as n →∞.

3. Prove that if f and g are probability densities, then F (f∗g)(t) = (Ff)(t)×
(Fg)(t) for all t. Use this to prove that if f is a probability density and
φε is the N(0 , ε2) density, then f ∗φε has an integrable Fourier transform.

Solution: Compute directly to find that

F (f ∗ g)(t) =
∫ ∞

−∞
eitx(f ∗ g)(x) dx

=
∫ ∞

−∞
eitx

(∫ ∞

−∞
f(y)g(x− y) dy

)
dx

=
∫ ∞

−∞

(∫ ∞

−∞
eit(x−y)g(x− y) dx

)
eityf(y) dy

= (Ff)(t)× (Fg)(t).

Recall that (Fφε)(t) = e−t2ε2/2. Because |(Ff)(t)| ≤ 1, it follows that
|F (f ∗ φε)(t)| ≤ e−t2ε2/2, which is integrable. In fact,∫ ∞

−∞
|F (f ∗ φε)(t)| dt ≤

∫ ∞

−∞
e−t2ε2/2 dt =

√
2π

ε
< ∞.

4. Let X1, X2, . . . be an i.i.d. sample from a density function f . We assume
that f is differentiable in an open neighborhood V of a fixed point x, and
B := maxz∈V |f ′(z)| < ∞.
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(a) Prove that for all λ > 0, m ≥ 1, and all x ∈ R,

P
{

min
1≤j≤m

|Xj − x| ≥ λ

}
=

[
1−

∫ x+λ

x−λ

f(z) dz

]m

.

Solution: By independence,

P
{

min
1≤j≤m

|Xj − x| ≥ λ

}
= [P {|X1 − x| ≥ λ}]m .

Compute the latter probability to finish.
(b) Prove that for all ε > 0 small enough,

max
z∈[x−ε,x+ε]

∣∣f(x)− f(z)
∣∣ ≤ 2Bε.

Use this to estimate |
∫ x+ε

x−ε
f(z) dz − 2εf(x)|.

Solution: Apply Taylor’s expansion with remainder to find that
|f(x) − f(z)| ≤ B|x − z| whenever z ∈ V . This implies the first
claim. For the second claim we note that by the triangle inequality,∣∣∣∣∫ x+ε

x−ε

f(z) dz − 2εf(x)
∣∣∣∣ ≤ ∫ x+ε

x−ε

|f(z)− f(x)| dx.

Apply the first claim to deduce that this is at most 4Bε2.
(c) Suppose that as m → ∞, λm → ∞ and λ2

m/m → 0. Then, prove
that

lim
m→∞

−1
2λm

ln P
{

min
1≤j≤m

|Xj − x| ≥ λm

m

}
= f(x).

Solution: According to part (a) we can write

P
{

min
1≤j≤m

|Xj − x| ≥ λm

m

}
=

[
1−

∫ x+(λm/m)

x−(λm/m)

f(z) dz

]m

.

Apply (b) to find that

P
{

min
1≤j≤m

|Xj − x| ≥ λm

m

}
=
[
1− 2λm

m
f(x) + δm

]m

,

where |δm| ≤ 4B(λm/m)2. Now recall that for η > 0 small,

ln(1− η) = −η +
1
2
η2 − 1

3
η3 ± · · · .

Thus, [
1− 2λm

m
f(x) + δm

]m

= e−2λmf(x)+mδm±···.

Because λ2
m/m → 0, it follows that (mδm + · · · ) → 0 as m → ∞.

The assertion follows.

3



(d) Devise an estimator of f(x) based on the previous steps.
Solution: Choose and fix an enormous integer m ≥ 1. Our goal is
to estimate

θm :=
−1
2λm

ln P
{

min
1≤j≤m

|Xj − x| ≥ λm

m

}
.

Choose and fix a massively large integer n ≥ 1. Simulate n copies of
(X1 , . . . , Xm). Say (X1

1 , . . . , X1
m) through (Xn

1 , . . . , Xn
m). Then by

the law of large numbers, as n →∞,

θ̂m,n :=
−1
2λm

ln

(
1
n

n∑
`=1

I
{

min
1≤j≤m

∣∣X`
j − x

∣∣ ≥ λm

m

})
P→ θm.
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