Solutions to Homework \#1 Math 6070-1, Spring 2006

1. Compute, carefully, the moment generating function of a $\operatorname{Gamma}(\alpha, \beta)$. Use it to compute the moments of a Gamma-distributed random variable.
Solution: Recall that

$$
f(x)=\frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x}, \quad 0<x<\infty
$$

Therefore,

$$
M(t)=\frac{\beta^{\alpha}}{\Gamma(\alpha)} \int_{0}^{\infty} x^{\alpha-1} e^{-(\beta-t) x} d x
$$

If $t \geq \beta$, then $M(t)=\infty$. But if $t<\beta$ then $M(t)=\beta^{\alpha} /(\beta-t)^{\alpha}$. Its derivatives are $M^{\prime}(t)=\beta^{\alpha} \alpha(\beta-t)^{-\alpha-1}, M^{\prime \prime}(t)=\beta^{\alpha} \alpha(\alpha-1)(\beta-t)^{-\alpha-2}$, and so on. The general term is $M^{(k)}(t)=\beta^{\alpha}(\beta-t)^{-\alpha-k} \prod_{\ell=0}^{k-1}(\alpha-\ell)$. Thus, $\mathrm{E} X=M^{\prime}(0)=\alpha / \beta, \mathrm{E} X^{2}=M^{\prime \prime}(0)=\alpha(\alpha-1) / \beta^{2}$, and so. In general, we have $\mathrm{E} X^{k}=\beta^{-k} \prod_{j=0}^{k-1}(\alpha-j)$.
2. Let $X_{1}, X_{2}, \ldots, X_{n}$ be an independent sample (i.e., they are i.i.d.) with finite mean $\mu=\mathrm{E} X_{1}$ and variance $\sigma^{2}=\operatorname{Var} X_{1}$. Define

$$
\begin{equation*}
\hat{\sigma}_{n}^{2}:=\frac{1}{n} \sum_{j=1}^{n}\left(X_{j}-\bar{X}_{n}\right)^{2} \tag{1}
\end{equation*}
$$

where $\bar{X}_{n}:=\left(X_{1}+\cdots+X_{n}\right) / n$ denotes the sample average. First, compute $\mathrm{E} \hat{\sigma}_{n}^{2}$. Then prove, carefully, that $\hat{\sigma}_{n}^{2}$ converges in probability to σ^{2}.
Solution: $\hat{\sigma}_{n}^{2}=n^{-1} \sum_{j=1}^{n} X_{j}^{2}-\left(\bar{X}_{n}\right)^{2}$. Therefore, $\mathrm{E} \hat{\sigma}_{n}^{2}=\mathrm{E}\left[X_{1}^{2}\right]-$ $\mathrm{E}\left[\left(\bar{X}_{n}\right)^{2}\right]$. But $\mathrm{E} X_{1}^{2}=\operatorname{Var}\left(X_{1}\right)+\mu^{2}=\sigma^{2}+\mu^{2}$. Similarly, $\mathrm{E}\left[\left(\bar{X}_{n}\right)^{2}\right]=$ $\operatorname{Var}\left(\bar{X}_{n}\right)+\left(\mathrm{E} \bar{X}_{n}\right)^{2}=\left(\sigma^{2} / n\right)+\mu^{2}$. Therefore, $\mathrm{E} \hat{\sigma}_{n}^{2}=\sigma^{2}(n-1) / n$. As regards the large-sample theory ... we apply the law of large numbers twice: $\bar{X}_{n} \xrightarrow{\mathrm{P}} \mu ;$ and $n^{-1} \sum_{=1}^{n} X_{i}^{2} \xrightarrow{\mathrm{P}} \sigma^{2}+\mu^{2}$. This proves that $\hat{\sigma}_{n}^{2}$ is a consistent estimator of σ^{2}.
3. Let U have the Uniform- $(0,1)$ distribution.
(a) Prove that if F is a distribution function and F^{-1}-its inverse functionexists, then the distribution function of $X:=F^{-1}(U)$ is F.
Solution: $\mathrm{P}\{X \leq x\}=\mathrm{P}\{U \leq F(x)\}=F(x)$, whence we have $F_{X}=F$, as desired.
(b) Use the preceding to prove that $X:=\tan U$ has the Cauchy distribution. That is, the density function of Y is

$$
\begin{equation*}
f_{X}(a):=\frac{1}{\pi\left(1+a^{2}\right)}, \quad-\infty<a<\infty \tag{2}
\end{equation*}
$$

Solution and Correction: Let C have the Cauchy distribution. Then,

$$
\begin{aligned}
F_{C}(a) & =\mathrm{P}\{C \leq a\}=\int_{-\infty}^{a} \frac{d u}{\pi\left(1+u^{2}\right)} \\
& =\frac{1}{\pi} \arctan a-\frac{1}{\pi} \arctan (-\infty)=\frac{1}{\pi} \arctan (a)+\frac{1}{2}
\end{aligned}
$$

Therefore, $F_{C}^{-1}(a)=\arctan \left(\pi x-\frac{\pi}{2}\right)$, and $F_{C}^{-1}(U) \sim$ Cauchy. Note that $V:=\pi U-(\pi / 2) \sim$ Uniform- $(-\pi / 2, \pi / 2)$. So $\arctan (V)$ is indeed Cauchy, where $V \sim$ Uniform- $(-\pi / 2, \pi / 2)$.
(c) Use the preceding to find a function h such that $Y:=h(U)$ has the Exponential (λ) distribution.
Solution: If $X \sim \operatorname{Exp}(\lambda)$ then $F(x)=\int_{-\infty}^{x} \lambda e^{-\lambda z} d z=1-e^{-\lambda x}$. Thus, $h(x):=F^{-1}(x)=-\lambda^{-1} \ln (1-x)$, and $F^{-1}(U) \sim \operatorname{Exp}(\lambda)$. Note that $1-U$ has the same distribution as U. So $-\lambda^{-1} \ln (U) \sim$ Exponential (λ).
4. A random variable X has the logistic distribution if its density function is

$$
\begin{equation*}
f(x)=\frac{e^{-x}}{\left(1+e^{-x}\right)^{2}}, \quad-\infty<x<\infty \tag{3}
\end{equation*}
$$

(a) Compute the distribution function of X.

Solution: Set $y:=1+e^{-x}$ to find that

$$
\begin{aligned}
F(a) & =\int_{-\infty}^{a} \frac{e^{-x}}{\left(1+e^{-x}\right)^{2}} d x=\int_{1+\exp (-a)}^{\infty} \frac{d y}{y^{2}} \\
& =\frac{1}{1+e^{-a}}
\end{aligned}
$$

(b) Compute the moment generating function of X.

Solution: Again set $y:=e^{-x}$ to find that

$$
M(t)=\int_{-\infty}^{\infty} \frac{e^{(t-1) x}}{\left(1+e^{-x}\right)^{2}} d x=\int_{0}^{\infty} \frac{y^{-t}}{(1+y)^{2}} d y
$$

If $|t| \geq 1$ then this is ∞ [consider the integral for small y when $t \geq 1$, or large y when $t \leq-1]$. On the other hand, if $|t|<1$ then this is finite. Remarkably enough, $M(t)$ can be computed explicitly when $|t|<1$. Note that

$$
\frac{1}{(1+y)^{2}}=\int_{0}^{\infty} z e^{-z(1+y)} d z
$$

Therefore,

$$
\begin{aligned}
M(t) & =\int_{0}^{\infty}\left(\int_{0}^{\infty} z e^{-z(1+y)} d z\right) y^{-t} d y \\
& =\int_{0}^{\infty}\left(\int_{0}^{\infty} y^{-t} e^{-z y} d y\right) z e^{-z} d z
\end{aligned}
$$

because the order of integration can be reversed. A change of variable $[w:=y z]$ shows that the inner integral is

$$
\begin{aligned}
\int_{0}^{\infty} y^{-t} e^{-z y} d y & =z^{t-1} \int_{0}^{\infty} w^{-t} e^{-w} d w \\
& =z^{t-1} \Gamma(1-t)
\end{aligned}
$$

Therefore, whenever $|t|<1$,

$$
\begin{aligned}
M(t) & =\Gamma(1-t) \int_{0}^{\infty} z^{t} e^{-z} d z \\
& =\Gamma(1-t) \Gamma(1+t)
\end{aligned}
$$

There are other ways of deriving this identity as well. For instance, we can write $w:=(1+y)^{-1}$, so that $d w=-(1+y)^{-2} d y$ and $y=$ $(1 / w)-1$. Thus,

$$
\begin{aligned}
M(t) & =\int_{0}^{1}\left(\frac{1}{w}-1\right)^{-t} d w \\
& =\int_{0}^{1} w^{t}(1-w)^{-t} d w=\mathrm{B}(1+t, 1-t)
\end{aligned}
$$

where $\mathrm{B}(a, b):=\int_{0}^{1} w^{a-1}(1-w)^{b-1} d w$ denotes the "beta function." From tables (for instance), we know that $\mathrm{B}(a, b)=\Gamma(a) \Gamma(b) / \Gamma(a+b)$. Therefore, $M(t)=\Gamma(1+t) \Gamma(1-t) / \Gamma(2)=\Gamma(1+t) \Gamma(1-t)$, as desired.
(c) Prove that $\mathrm{E}\left\{|X|^{r}\right\}<\infty$ for all $r>0$.

Solution: We will prove a more general result: If $M(t)<\infty$ for all $t \in\left(-t_{0}, t_{0}\right)$ where $t_{0}>0$, then $\mathrm{E}\left(|X|^{k}\right)<\infty$ for all $k \geq 1$. Recall that $\mathrm{E} Z=\int_{0}^{\infty} \mathrm{P}\{Z>t\} d t$ whenever $Z \geq 0$. Apply this with $Z:=|X|^{k}$ to find that

$$
\begin{aligned}
\mathrm{E}\left(|X|^{k}\right) & =\int_{0}^{\infty} \mathrm{P}\left\{|X|^{k}>r\right\} d r \\
& =\int_{0}^{\infty} \mathrm{P}\left\{|X|>r^{1 / k}\right\} d r \\
& =k \int_{0}^{\infty} \mathrm{P}\{|X|>s\} s^{k-1} d s
\end{aligned}
$$

[Set $s:=r^{1 / k}$.] Fix $t \in\left(-t_{0}, t_{0}\right)$. Then, by Chebyshev's inequality,

$$
\mathrm{P}\{|X|>s\}=\mathrm{P}\left\{e^{t|X|} \geq e^{t s}\right\} \leq \frac{\mathrm{E}\left[e^{t|X|}\right]}{e^{t s}}
$$

But $e^{t|x|} \leq e^{t x}+e^{-t x}$ for all $x \in \mathbf{R}$, with room to spare. Therefore, $\mathrm{E}\left[r^{t|X|}\right] \leq M(t)+M(-t)$, whence it follows that for $t \in\left(-t_{0}, t_{0}\right)$ fixed and $A:=M(t)+M(-t), \mathrm{P}\{|X|>s\} \leq A e^{-s t}$. Thus,

$$
\mathrm{E}\left(|X|^{k}\right) \leq A k \int_{0}^{\infty} s^{k-1} e^{-s t} d s=A k t^{k} \Gamma(k)=A k!t^{k}<\infty
$$

