
p. 60 9. Brownian Motion

9.3. Any vector is centered Gaussian iff all linear combinations are one-dimensional, centered Gaussians.
This proves that (Gm+1, . . . , Gn) is Gaussian.
The remainder will be posted soon.

9.4. Let {Ui}3
i=1 be three independent, standard-normal variates. Define X1 = sgn(U1)|U2| and X2 =

sgn(U1)|U3|. It is not too hard to check that each Xi is N(0, 1), but P{X1 > 0 |X2 < 0} = 0.
Therefore, (X1, X2) is not two-dimensional-Gaussian.

9.5. Because W is a.s. continuous, I(t) =
∫ t
0 W (s) ds is a Riemann integral, and is continuously-

differentiable in t (fundamental theorem of calculus). We can also approximate I(t) as a Riemann
sum:
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Because the vector (W (t/N), . . . ,W (t)) is Gaussian, I(t) is the limit of linear combinations of Gaus-
sians, whence it is Gaussian (Problem 9.2).

9.6. Throughout define ∆jn = W ((j + 1)t/n)−W (jt/n). By the strong markov property, {∆jn}n−1
j=0 is a

sequence of i.i.d. N(0, t/n)’s; also, Vn(t) =
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j=0 ∆2
jn.
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This proves that ‖Vn(t)− t‖22 = Var(Vn(t)) = 2t2/n→ 0, as asserted.
(b) Because Vn(t)− t =

∑n−1
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Let Z be a standard-normal variate. Because ∆jn = N(0, t/n) has the same distribution as√
t/n× Z,
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Therefore, ‖Vn(t)− t‖4 ∼ cn−1/2 for some c, and this yields the desired bound.

9.7. Evidently, −W and {tW (1/t)}t≥0 are centered Gaussian processes [because W is a centered Gaussian
process]. It remains to compute covariances. But then,

E [{−W (s)} {−W (t)}] = E [W (s)W (t)] = min(s, t).
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