
9
Brownian Motion

9.1. If X and Y are independent, then for all bounded, continuous f, g : Rd → R,

E[f(X)g(Y )] = E[f(X)] · E[g(Y )].

Apply this with f(x) = exp(iu · x) and g(y) = exp(iv · y) to obtain half of the result. Conversely,
suppose that the preceding identity holds for the stated f and g, for all such u and v. By the inversion
theorem, for all ψ ∈ L1(P),

ψ(x) = (2π)−d

∫

Rd

e−iu·xψ̂(u) du.

Therefore, for all ψ, φ ∈ L1(P), E[ψ(X)φ(Y )] = E[ψ(X)]E[φ(Y )], thanks to Fubini–Tonelli.

To derive Corollary 9.7 note that the covariance matrix of (X1, . . . , Xn, Y1, · · · , Ym) has the form

Q =
[
Q1 0
0 Q2

]
,

where Q1 is the covariance matrix of (X1, . . . , Xn) and Q2 is that of (Y1, . . . , Ym). In particular, for
all α ∈ Rn and β ∈ Rm,

E
[
ei(α,β)·(X1,...,Xn,Y1,...,Ym)

]
= exp

(
−1

2
(α, β) · Q(α, β)

)

= exp
(
−1

2
α · Q1α−

1
2
β · Q2β

)

= E
[
eiα·(X1,...,Xn)

]
× E

[
eiβ·(Y1,...,Ym)

]
.

The asserted independence follows from the first part.

9.2. By definition, E[exp(iα · Gn)] = exp(− 1
2α · Qnα) for all α ∈ Rk, where Qn

ij = E[Gn
i Gn

j ]. Therefore,
limn E[exp(iα · Gn)] = exp(− 1

2α · Qα). Evidently, Q is nonnegative-definite because Qn is. Also, Q is
symmetric. Therefore, exp(− 1

2α·Qα) is the characteristic function of a Gaussian vector with covariance
matrix Q (Theorem 9.5). The convergence theorem for characteristic functions finishes the proof.


