8.8. Define $f_{X \mid Y}(x \mid y)=f(x, y) / f_{Y}(y)$ where $f_{Y}(y)=\int_{-\infty}^{\infty} f(a, y) d a$; this shows that our goal is to prove that $\mathrm{E}[h(X) \mid Y]=\int_{-\infty}^{\infty} h(x) f_{X \mid Y}(x \mid Y) d x$ a.s., which is the classical formula on $\{Y=y\}$.
For any positive, bounded function g,

$$
\begin{align*}
\mathrm{E}[h(X) g(Y)] & =\int_{-\infty}^{\infty} g(y)\left(\int_{-\infty}^{\infty} h(x) f(x, y) d x\right) d y \\
& =\int_{-\infty}^{\infty} g(y) f_{Y}(y)\left(\int_{-\infty}^{\infty} h(x) f_{X \mid Y}(x \mid y) d x\right) d y \tag{8.2}\\
& =\mathrm{E}[\Pi(Y) g(Y)]
\end{align*}
$$

where $\Pi(y)=\int_{-\infty}^{\infty} h(x) f_{X \mid Y}(x \mid y) d x$. By a monotone class argument, for all bounded $\sigma(Y)$-measurable Z, $\mathrm{E}[h(X) Z]=\mathrm{E}[\Pi(Y) Z]$. Therefore, $\mathrm{E}[h(X) \mid Y]=\Pi(Y)$ a.s., which is the desired result.
Apply (8.2) with $h(x)=\mathbf{1}_{(-\infty, a]}(x)$ to find that $\mathrm{P}(X \leq a \mid Y)=\int_{-\infty}^{a} f_{X \mid Y}(u \mid y) d u$, as desired.

