8.8. Define $f_{X|Y}(x|y) = f(x,y)/f_Y(y)$ where $f_Y(y) = \int_{-\infty}^{\infty} f(a,y) da$; this shows that our goal is to prove that $E[h(X) | Y] = \int_{-\infty}^{\infty} h(x) f_{X|Y}(x|Y) dx$ a.s., which is the classical formula on $\{Y = y\}$.

For any positive, bounded function g,

E

$$[h(X)g(Y)] = \int_{-\infty}^{\infty} g(y) \left(\int_{-\infty}^{\infty} h(x)f(x,y) dx \right) dy$$

=
$$\int_{-\infty}^{\infty} g(y)f_Y(y) \left(\int_{-\infty}^{\infty} h(x)f_{X|Y}(x|y) dx \right) dy$$

=
$$E[\Pi(Y)g(Y)],$$

(8.2)

where $\Pi(y) = \int_{-\infty}^{\infty} h(x) f_{X|Y}(x|y) dx$. By a monotone class argument, for all bounded $\sigma(Y)$ -measurable Z, $E[h(X)Z] = E[\Pi(Y)Z]$. Therefore, $E[h(X) | Y] = \Pi(Y)$ a.s., which is the desired result. Apply (8.2) with $h(x) = \mathbf{1}_{(-\infty,a]}(x)$ to find that $P(X \le a | Y) = \int_{-\infty}^{a} f_{X|Y}(u|y) du$, as desired.