8.2. Let X, Y, and Z be three independent random variables, each taking the values ± 1 with probability $\frac{1}{2}$ each. Define W = X, U = X + Y, and V = X + Z. Then, E[U | W] = X + E[Y] = X a.s. In particular,

$$E[E(U|W)|V] = E[X|V] = 1 \quad \text{a.s. on } \{V = 2\}$$

= -1 \quad \text{a.s. on } \{V = -2\}. (8.1)

On the other hand, E[X; V = 0] = E[X; X = 1, Z = -1] + E[X; X = -1, Z = 1] = 0. Therefore, to summarize: $E\{E(U|W)|V\} = V/2$ a.s. A similar analysis shows that E[U|V] = V/2 a.s also. Thus,

$$E[E(U|V)|W] = \frac{1}{2}E[V|W] = \frac{1}{2}X$$
 a.s.

Because $P{V \neq X} = 1$, we have produced an example wherein $E[E(U|V)|W] \neq E[E(U|W)|V]$ a.s.