8.2. Let X, Y, and Z be three independent random variables, each taking the values ± 1 with probability $\frac{1}{2}$ each. Define $W=X, U=X+Y$, and $V=X+Z$. Then, $\mathrm{E}[U \mid W]=X+\mathrm{E}[Y]=X$ a.s. In particular,

$$
\begin{align*}
\mathrm{E}[\mathrm{E}(U \mid W) \mid V]=\mathrm{E}[X \mid V] & =1 \quad \text { a.s. on }\{V=2\} \tag{8.1}\\
& =-1 \quad \text { a.s. on }\{V=-2\} .
\end{align*}
$$

On the other hand, $\mathrm{E}[X ; V=0]=\mathrm{E}[X ; X=1, Z=-1]+\mathrm{E}[X ; X=-1, Z=1]=0$. Therefore, to summarize: $\mathrm{E}\{\mathrm{E}(U \mid W) \mid V\}=V / 2$ a.s. A similar analysis shows that $\mathrm{E}[U \mid V]=V / 2$ a.s also. Thus,

$$
\mathrm{E}[\mathrm{E}(U \mid V) \mid W]=\frac{1}{2} \mathrm{E}[V \mid W]=\frac{1}{2} X \quad \text { a.s. }
$$

Because $\mathrm{P}\{V \neq X\}=1$, we have produced an example wherein $\mathrm{E}[\mathrm{E}(U \mid V) \mid W] \neq \mathrm{E}[\mathrm{E}(U \mid W) \mid V]$ a.s.

