8.19. Suppose we could write our submartingale X as: $X_{n}=M_{n}+Z_{n}$ and $X_{n}=M_{n}^{\prime}+Z_{n}^{\prime}$, where M and M^{\prime} are martingales, and Z and Z^{\prime} are previsible increasing processes. Because $M-M^{\prime}$ defines a martingale, this proves that $Z_{n}-Z_{n}^{\prime}$ defines a martingale also. That is,

$$
\mathrm{E}\left[Z_{n}-Z_{n}^{\prime} \mid \mathscr{F}_{n-1}\right]=Z_{n-1}-Z_{n-1}^{\prime}
$$

But $Z-Z^{\prime}$ is previsible. So the preceding also equals $Z_{n}-Z_{n}^{\prime}$ a.s. This proves that for all $n \geq 1, Z_{n}-Z_{n-1}=$ $Z_{n}^{\prime}-Z_{n-1}^{\prime}$ a.s. Thus, for all $m \geq 1, Z_{m}=Z_{1}+\sum_{j=2}^{m}\left(Z_{j}-Z_{j-1}\right)=Z_{1}+\sum_{j=2}^{m}\left(Z_{j}^{\prime}-Z_{j-1}^{\prime}\right)=Z_{1}-Z_{1}^{\prime}+Z_{m}^{\prime}$ a.s. Thus, if we insist that $Z_{1}=Z_{1}^{\prime}=\mathrm{E}\left[X_{1}\right]$, as was the case in the proof of Theorem 8.20, then $Z_{m}=Z_{m}^{\prime}$ a.s. for all m.

