$\mathrm{E}\left[M_{n+1}(t)\,|\,\mathscr{F}_{n}^{0}
ight]=rac{e^{tS_{n}}\mathrm{E}\left[e^{tX_{n+1}}
ight]}{\prod_{k=1}^{n+1}h_{k}(t)}=M_{n}(t).$

8.15. Let $\mathscr{F}_n^0 = \sigma(\{X_i\}_{i=1}^n)$ to find that a.s.,

Thus, $\{M_n(t)\}_{n=1}^{\infty}$ is indeed a mean-one \mathscr{F}^0 -martingale. The second part follows from the first and independence.