8.11. We may use the elementary fact that S is a stopping time iff $\{S \le n\} \in \mathcal{F}_n$ for all $n \ge 1$. This is equivalent to: $\{S > n\} \in \mathcal{F}_n$ for all $n \ge 1$.

By induction, we need only consider the case n=2. For all $t \ge 0$, $\{T_1+T_2=n\}=\cup_{k=1}^n(\{T_1=k\}\cap\{T_2=n-k\})\in \mathscr{F}_n$. Therefore, T_1+T_2 is a stopping time. Also, $\{\min(T_1,T_2)>n\}=\{T_1>n\}\cap\{T_2>n\}$. Therefore, $\min(T_1,T_2)$ is a stopping time. Finally, $\{\max(T_1,T_2)\le n\}=\{T_1\le n\}\cap\{T_2\le n\}$, and so $\max(T_1,T_2)$ is a stopping time too. This proves Lemma 8.27. Next we prove Lemma 8.28.

If $A \in \mathscr{F}_S$ then for all $n \ge 1$, $A \cap \{T = n\} = \bigcup_{m=1}^m A \cap \{T = n\} \cap \{S = m\}$. By the definition of \mathscr{F}_S , $A \cap \{S = m\} \in \mathscr{F}_m \subset \mathscr{F}_n$. Therefore, $A \cap \{S = m\} \cap \{T = m\} \in \mathscr{F}_n$, which means that $A \in \mathscr{F}_T$. Therefore, $\mathscr{F}_S \subseteq \mathscr{F}_T$.

To prove that \mathscr{F}_T is a σ -algebra, let $A \in \mathscr{F}_T$. We know that $\{T = n\} \in \mathscr{F}_n$ and $A \cap \{T = n\}$ are in \mathscr{F}_n for all $n \ge 1$. Therefore, so is $A^c \cap \{T = n\} = \{T = n\} \cap (A \cap \{T = n\})^c$. This proves that \mathscr{F}_T is closed under complementation. If $A_1, A_2, \ldots \in \mathscr{F}_T$ then $\bigcup_{i=1}^{\infty} A_i \cap \{T = n\} = \bigcup_{i=1}^{n} (A_i \cap \{T = n\}) \in \mathscr{F}_n$ for all n. Therefore, \mathscr{F}_T is a σ -algebra.

So far, we needed S and T to be a.s. finite only. For the remaining assertions we assume that T is a.s. bounded—say $T \le k$ a.s.; it suffices to consider a submartingale X. Let $d_1 = X_1$ and $d_j = X_j - X_{j-1}$ $(j \ge 2)$. For all $A \in \mathscr{F}_S$,

$$E[X_T - X_S; A] = E\left[\sum_{j=S+1}^T d_j; A\right] = E\left[\sum_{j=1}^k \mathbf{1}_{\{S < j \le T\} \cap A} d_j\right]$$
$$= \sum_{j=1}^k E\left[\mathbf{1}_{\{S < j \le T\} \cap A} E(d_j | \mathscr{F}_{j-1})\right] \ge 0,$$

because $\{S < j \le T\} \cap A = A \cap \{S \le j - 1\}^c \cap \{T \le j - 1\}^c \in \mathscr{F}_{j-1}$.