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8.11.We may use the elementary fact that S is a stopping time iff {S ≤ n} ∈Fn for all n≥ 1. This is equivalent to:
{S> n} ∈Fn for all n≥ 1.
By induction, we need only consider the case n = 2. For all t ≥ 0, {T1 + T2 = n} = ∪nk=1({T1 = k}∩ {T2 =
n−k}) ∈Fn. Therefore, T1+T2 is a stopping time. Also, {min(T1,T2) > n} = {T1 > n}∩{T2 > n}. Therefore,
min(T1,T2) is a stopping time. Finally, {max(T1,T2) ≤ n} = {T1 ≤ n} ∩ {T2 ≤ n}, and so max(T1,T2) is a
stopping time too. This proves Lemma 8.27. Next we prove Lemma 8.28.
If A ∈FS then for all n ≥ 1, A∩{T = n} = ∪mm=1A∩{T = n}∩{S = m}. By the definition of FS, A∩{S =
m} ∈Fm ⊂Fn. Therefore, A∩{S= m}∩{T = m} ∈Fn, which means that A ∈FT . Therefore,FS ⊆FT .
To prove that FT is a σ -algebra, let A ∈ FT . We know that {T = n} ∈ Fn and A∩{T = n} are in Fn for
all n ≥ 1. Therefore, so is Ac ∩{T = n} = {T = n}∩ (A∩{T = n})c. This proves that FT is closed under
complementation. If A1,A2, . . . ∈FT then ∪∞i=1Ai ∩{T = n} = ∪ni=1(Ai ∩{T = n}) ∈Fn for all n. Therefore,
FT is a σ -algebra.
So far, we needed S and T to be a.s. finite only. For the remaining assertions we assume that T is a.s. bounded—
say T ≤ k a.s.; it suffices to consider a submartingale X . Let d1 = X1 and d j = Xj −Xj−1 ( j ≥ 2). For all
A ∈FS,
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because {S< j ≤ T}∩A= A∩{S≤ j−1}c∩{T ≤ j−1}c ∈F j−1.

8.12. Following the hint, note that S2T = 1. Because {S2n−n}∞n=1 is a mean-zero martingale (why?), it follows that if
we could have the optional stopping theorem for the stopping time T then E[T ] = 1. But T ≥ 1, which implies
that T = 1 a.s. (why?). Evidently, this is nonsense.

8.13. We have Sn+1− (n+ 1)µ = Sn− nµ +(Xn+1− µ). Because E[Xn+1− µ |Fn] = E[Xn+1]− µ = 0 a.s., {Sn−
nµ}∞n=1 is a martingale.
Similarly, when µ = 0, S2n+1− (n+ 1)σ2 = (Sn +Xn+1)2− (n+ 1)σ2 = S2n− nσ2 + (X2n+1−σ2 + 2Xn+1Sn).
Because E[X2n+1−σ2+2Xn+1Sn |Fn] = 0 a.s. we can conclude that S2n−nσ2 defines a martingale.

8.14. LetFn = σ({Xi}ni=1). For any number t > 0,
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Let t = ζ := (1− p)/p to find that ζ Sn defines a mean-one martingale.
Next, suppose p = 1

2 ; we want to compute E[T ]. Note that in this case, E[X1] = 0 and Var(X1) = 1. Therefore,
{S2n−n}∞n=1 is a mean-zero martingale (why?). In particular, E[S2T∧n] = E[T ∧n] for all n. As n→ ∞, the right-
hand side converges to E[T ] by the monotone convergence theorem. Since supn |ST∧n| ≤max(g,h), the left-hand
side converges to E[S2T ] by the dominated convergence theorem. Therefore, E[S2T ] = E[T ]. But ST is a discrete
random variable: It is equal to −g with probability h/(g+h) and h with probability g/(g+h). Hence,
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8.15. LetF 0
n = σ({Xi}ni=1) to find that a.s.,
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