
p. 42 7. The Central Limit Theorem

Evidently, |T1| ≤ sup | f | ×P{|Yn−Y | ≥ ε} → 0. Since f is uniformly continuous, for all η > 0 we can
choose ε > 0 such that | f (x ,y)− f (x ,z)| ≤ η whenever |y− z| ≤ ε . Thus,

∣∣∣T2−E [ f (Xn ,Y ); |Yn−Y | ≤ ε]
∣∣∣≤ η .

Finally, ∣∣∣E [ f (Xn ,Y ); |Yn−Y | ≤ ε]−E f (Xn ,Y )
∣∣∣≤ sup | f |×P{|Yn−Y | > ε}→ 0.

Combine our efforts to deduce that

lim
n→∞

|E f (Xn ,Yn)−E f (Xn ,Y )| = 0.

Since Y is non-random and Xn⇒ X , E f (Xn ,Y )→ E f (X ,Y ), and the claim follows.
2. This follows readily from the Mann–Wold device.
3. Let X be a (real-valued) symmetric random variable, and define Xn = X and Yn =−X for all n≥ 1. Then

Xn has the same distribution as X , and so does Yn. In particular, Xn⇒ X and Yn⇒ X . However, it is clear
that (Xn ,Yn) '⇒ (X ,X), unless P{X = 0} = 1.

7.33. P{Tn > k} = P{X1+ · · ·+Xk < n}. Now,
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Fix k ≥ 1 and let n→ ∞ to find that
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whereU1,U2, . . . ,Uk are i.i.d. Unif(0 ,1)’s. By the convergence theorem of characteristic functions,
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Consequently, limn→∞P{Tn > k} = P{U1+ · · ·+Uk < 1} = 1/k!, after symmetry considerations. Since P{Tn =
k} = P{Tn > k−1}−P{Tn > k} the result follows.

7.34. Let Sn = Bin(n , p0) and Yn := (Sn−np0)/
√
n, and note that

√
n |(Bn f )(p0)− f (p0)| = E(|Yn|) .

Because E[Y 2n ] = 1< ∞, {Yi}∞i=1 is uniformly integrable. Therefore, by the central limit theorem,

lim
n→∞

√
n |(Bn f )(p0)− f (p0)| = E(|N(0 ,1)|) =

√
2/π.

Thus, |(Bn f )(p0)− f (p0)| ≥ c/
√
n.

7.35. One form of the Plancherel’s theorem in Rk states that if f ∈C∞c (Rk) then for all finite measures µ onB(Rk),
∫

Rk
f dµ =

1
(2π)k

∫

Rk
f̂ (t)µ̂(t)dt.

(Check!) Apply this with µ(dx) = f (x)dx to find that if f is a probability density function in C∞c (Rk) then
∫

Rk
| f (x)|2 dx=

1
(2π)k

∫

Rk
| f̂ (t)|2 dt, ,


