7.3. If X is uniform- $[0,1]$, then

$$
\mathrm{E}\left[e^{i t(a X+b)}\right]=\int_{0}^{1} e^{i t(a x+b)} d x=\frac{e^{i t(a+b)}-e^{i t b}}{i a t}
$$

If Y is uniform $=[b, a+b]$, then

$$
\mathrm{E}\left[e^{i t Y}\right]=\int_{b}^{a+b} \frac{e^{i t y}}{a} d y=\frac{e^{i t(a+b)}-e^{i t b}}{i a t}
$$

The uniqueness theorem does the rest. Next suppose Z is uniform- $[0,1]$. Then $Z=\sum_{i=1}^{\infty} 2^{-i} Z_{i}$ where the Z_{i} 's are i.i.d. with values in $\{0,1\}$ with probability $\frac{1}{2}$ each. From Problem 1.15 we know that $X=2 Z-1$ is uniform-$[-1,1]$. But

$$
X=\sum_{i=1}^{\infty} 2^{-i} 2 Z_{i}-1=\sum_{i=1}^{\infty} 2^{-i}\left(2 Z_{i}-1\right)=\sum_{i=1}^{\infty} 2^{-i} X_{i}
$$

and it follows easily that the X_{i} 's are i.i.d. taking values ± 1 with probability $\frac{1}{2}$ each.

