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because
√
1− ε ≈ 1− (ε/2) as ε → 0.

Let X be such that P{X ≤ x} = exp(−e−x). (Why does this make sense?). Then,
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where P{X ≤ x} = exp(−e−x). Equivalently, anmax1≤ j≤n Xj +bn⇒ X where
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7.21. Define Yj = Xj1{|Xj |≤1} so that Yj’s are i.i.d. taking the values ±1 with probability
1
2 each. Evidently, P{Xj '=

Yj} = (2 j2)−1, which is summable in j. Therefore, by the Borel–Cantelli lemma with probability one, Xj = Yj
for all but a finite number of j’s. In particular, Sn/SD(Sn) ∼ ∑nj=1Yj/SD(Sn) a.s. But Var(Sn) = ∑nj=1(1.5−
(2 j2)−1) ∼ (3n/2) as n→ ∞. Apply the CLT to the Yj’s to find then that ∑nj=1Yj/

√
n⇒ N(0,1). Assemble

terms to find that Sn/SD(Sn)⇒ N(0,2/3).

7.22. For all t ∈ R, as r ↑ 1,
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Therefore,
√
1− r∑∞

j=0 r jXj⇒ N(0,σ2/2).

7.25. Let X1, . . . ,Xn be n i.i.d. Poisson variables with mean 1 each. Then X1+ · · ·+Xn is Poisson with mean n, and
so by the CLT,
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7.29. It suffices to prove that there exists c> 0 and n0 such that E|Sn|≥ c
√
n for all n≥ n0. But this follows from the

CLT as follows:
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7.30. First let us check that if Yn⇒ c for a non-random c then Yn→ c in probability. But this is easy to see, since for
all but possibly a countable number of ε > 0,

lim
n→∞

P{−ε < Yn− c≤ ε} = P{−ε ≤ c− c≤ ε} = 1.

1. Let us prove that if Xn ⇒ X and Yn → Y in probability then (Xn ,Yn) ⇒ (X ,Y ). Let f be a bounded,
uniformly continuous function of two variables. Then, we can write

E f (Xn ,Yn) = E [ f (Xn ,Yn); |Yn−Y |≥ ε]+E [ f (Xn ,Yn); |Yn−Y | < ε] := T1+T2.


