7.22. For all $t \in \mathbf{R}$, as $r \uparrow 1$,

$$
\begin{aligned}
\mathrm{E}\left[\exp \left(i t \sqrt{1-r} \sum_{j=0}^{\infty} r^{j} X_{j}\right)\right] & =\prod_{j=0}^{\infty} \mathrm{E}\left[\exp \left(i t \sqrt{1-r} r^{j} X_{1}\right)\right] \\
& \approx \prod_{j=0}^{\infty}\left(1-\frac{t^{2} \sigma^{2}(1-r) r^{2 j}}{2}\right) \\
& \approx \exp \left(-\frac{t^{2} \sigma^{2}(1-r)}{2} \sum_{j=0}^{\infty} r^{2 j}\right) \approx e^{-t^{2} \sigma^{2} / 4} .
\end{aligned}
$$

Therefore, $\sqrt{1-r} \sum_{j=0}^{\infty} r^{j} X_{j} \Rightarrow N\left(0, \sigma^{2} / 2\right)$.

