Solution 2. Here is an elegant solution, due to Z. Horváth. It relies on the following real-variable lemma.
Lemma: If $a_{n} \rightarrow \mu$ and $b_{n} \geq 0$ satisfy $\sum_{i=1}^{n} b_{i} \rightarrow \infty$, then $\sum_{i=1}^{n} a_{i} b_{i} \sim \mu \sum_{i=1}^{n} b_{i}$.
Proof Fix $\varepsilon>0$, and find n_{0} so large that $\left|a_{i}-\mu\right| \leq \mu+\varepsilon$ for all $i \geq n_{0}$. Then,

$$
\sum_{i=1}^{n} a_{i} b_{i} \sim \sum_{i=n_{0}}^{n} a_{i} b_{i}=(\mu \pm \varepsilon) \sum_{i=n_{0}}^{n} b_{i} \sim(\mu \pm \varepsilon) \sum_{i=1}^{n} b_{i}
$$

notation being clear.
Now let $S_{0}=0$, and $S_{n}=\sum_{j=1}^{n} S_{j}(n \geq 1)$, so that

$$
\sum_{i=1}^{n} \frac{X_{i}}{i}=\sum_{i=1}^{n}\left(S_{i}-S_{i-1}\right) \frac{1}{i}=\sum_{i=1}^{n} S_{i} \frac{1}{i}-\sum_{i=1}^{n} S_{i-1} \frac{1}{i}=\sum_{i=1}^{n} S_{i} \frac{1}{i}-\sum_{i=2}^{n-1} S_{i} \frac{1}{i+1}=S_{1}+\sum_{i=2}^{n-1} S_{i}\left(\frac{1}{i}-\frac{1}{i+1}\right)-\frac{S_{n}}{n+1}
$$

By the strong law, $S_{n} /(n+1) \rightarrow \mu$ a.s. Therefore,

$$
\frac{1}{\ln n} \sum_{i=1}^{n} \frac{X_{i}}{i} \sim \frac{1}{\ln n} \sum_{i=2}^{n-1} \frac{S_{i}}{i(i+1)} \sim \frac{1}{\ln n} \sum_{i=2}^{n-1} \frac{\mu}{i+1} \rightarrow \mu
$$

