6.29. Solution 1. We will need the following Lemma: As $n \to \infty$, $\sum_{i=1}^{n} (1/i) \sim \ln(n)$.

Proof This follows from the integral test of calculus, because $\int_{1}^{n} (dx/x) \leq \sum_{i=1}^{n} (1/i) \leq 1 + \int_{1}^{n} (dx/x)$.

 \square

Now let us first assume that $E[X_1] = 0$. Define $X'_i = X_i \mathbf{1}_{\{|X_i| \le i\}}$. Also define $S_n = \sum_{i=1}^n (X_i/i)$ and $S'_n = \sum_{i=1}^n (X'_i/i)$. By the Kolmogorov maximal inequality,

$$\mathsf{P}\left\{\max_{1\le k\le n} \left|S'_{k} - \mathsf{E}[S'_{k}]\right| \ge \varepsilon \ln n\right\} \le \frac{\mathsf{Var}S'_{n}}{\varepsilon^{2}(\ln n)^{2}} \le \frac{\|S'_{n}\|_{2}^{2}}{\varepsilon^{2}\ln^{2}(n)} = \frac{1}{\varepsilon^{2}\ln^{2}(n)}\sum_{i=1}^{n} \frac{\mathsf{E}\left[X_{1}^{2};|X_{1}|\le i\right]}{i^{2}}$$

Therefore,

$$\begin{split} \sum_{n=1}^{\infty} \mathsf{P}\left\{\max_{1 \le k \le 2^{2^{n}}} \left|S'_{k} - \mathsf{E}[S'_{k}]\right| \ge \varepsilon \ln\left(2^{2^{n}}\right)\right\} \le A \sum_{n=1}^{\infty} \frac{1}{4^{n}} \sum_{i=1}^{2^{n}} \frac{\mathsf{E}\left[X_{1}^{2}; |X_{1}| \le i\right]}{i^{2}} \le A \sum_{i=1}^{\infty} \frac{\mathsf{E}\left[X_{1}^{2}; |X_{1}| \le i\right]}{i^{2}} \\ \le B \sum_{i=1}^{\infty} \frac{\mathsf{E}\left[X_{1}^{2}; |X_{1}| \le i\right]}{i^{2}} = B\mathsf{E}\left[X_{1}^{2} \sum_{i \ge |X_{1}|} \frac{1}{i^{2}}\right] \le C\mathsf{E}X_{1}. \end{split}$$

By the Borel–Cantelli lemma, a.s., for all *n* large,

$$\max_{1 \le k \le 2^{2^n}} \left| S'_k - \operatorname{E}[S'_k] \right| \le \varepsilon \ln \left(2^{2^n} \right).$$

Any *m* is between some 2^{2^n} and $2^{2^{n+1}}$. Therefore,

$$|S'_m - \mathbf{E}[S'_m]| \le \max_{1 \le k \le 2^{2^{n+1}}} |S'_k - \mathbf{E}[S'_k]| \le \varepsilon \ln \left(2^{2^{n+1}}\right) = 2\varepsilon \ln(2) \cdot 2^n \le 2\varepsilon \ln(2) \ln m$$

This proves that a.s., $|S'_m - ES'_m| / \ln(m) \to 0$. But $\sum_k P\{S_k \neq S'_k\} = \sum_k P\{|X_1| > k\} < \infty$ because $||X_1||_1 < \infty$. So almost surely, $S_k = S'_k$ for all k large. It suffices to prove that $|ES'_m| / \ln m \to 0$. But

$$\left| \mathrm{E}S'_{m} \right| = \left| \sum_{i=1}^{m} \frac{\mathrm{E}[X_{1}; |X_{1}| \leq i]}{i} \right| = \left| \sum_{i=1}^{m} \frac{\mathrm{E}[X_{1}; |X_{1}| > i]}{i} \right|$$

since $EX_1 = 0$. Thus,

eral.

$$|\mathrm{E}S'_{m}| \leq \sum_{i=1}^{m} \frac{\mathrm{E}[|X_{1}|;|X_{1}| > i]}{i}$$

For all $\eta > 0$, there exists i_0 such that for al $i \ge i_0$, $\mathbb{E}\{|X_1|; |X_1| > i\} \le \eta$. Therefore, $\sum_{i=i_0}^m (\cdots) \le \eta \sum_{i=1}^m (1/i) \sim \eta \ln m$. But $\sum_{i=1}^{i_0} (\cdots) \le i_0 ||X_1||_1$. Therefore, $\limsup_m |\mathbb{E}S'_m| / \ln m \le \eta$ for all η , whence the result. If $\mu = \mathbb{E}X_1 \ne 0$, then consider instead $X_i^\circ := X_i - \mu$. The preceding proves that $\ln^{-1}(n) \sum_{i=1}^n (X_i^\circ/i) \to 0$ a.s. Equivalently, $\ln^{-1}(n) \{\sum_{i=1}^n (X_i/i) - \mu \sum_{i=1}^n (1/i)\} \to 0$. Because $\sum_{i=1}^n (1/i) \sim \ln(n)$, we obtain the result in gen-