6.17. Because X is a.s. integer-valued, we can write

$$
\sum_{i=1}^{\infty} \mathbf{1}_{\{X \geq i\}}=\sum_{i=1}^{\infty} \sum_{j=i}^{\infty} \mathbf{1}_{\{X=j\}}=\sum_{j=0}^{\infty} j \mathbf{1}_{\{X=j\}}=X \quad \text { a.s. }
$$

Take expectations to finish the derivation of the first claim. A useful, but equivalent, formulation is that when X is \mathbf{Z}_{+}-valued then $\mathrm{E} X=\sum_{n=0}^{\infty} \mathrm{P}\{X>n\}$. This is the variant we use below.

1. Note that for all $i \in\{2, \ldots, k\}$,

$$
\mathrm{P}\{X(k)>i\}=1 \cdot\left(1-\frac{1}{2 k-1}\right) \cdot\left(1-\frac{1}{2 k-2}\right) \cdots\left(1-\frac{1}{2 k-i+1}\right)=\frac{2 k-2}{2 k-1} \cdot \frac{2 k-3}{2 k-2} \cdots \frac{2 k-i}{2 k-i+1}=\frac{2 k-i}{2 k-1} .
$$

If $i>k$, then $\mathrm{P}\{X(k)>i\}=0$, and yet $\mathrm{P}\{X(k)>0\}=\mathrm{P}\{X(k)>1\}=1$. By these remarks and the first part,

$$
\mathrm{E}[X(k)]=\sum_{i=0}^{\infty} \mathrm{P}\{X(k)>i\}=2+\sum_{i=2}^{k} \frac{2 k-i}{2 k-1}=2+\sum_{i=2}^{k}\left(1-\frac{i-1}{2 k-1}\right)=k-\sum_{j=1}^{k-1} \frac{j}{2 k-1}=\frac{3 k^{2}-k}{4 k-2} .
$$

An amusing aside: $\mathrm{E}[X(k)] \sim 3 k / 4$ as $k \rightarrow \infty$.
2. Let N denote the first time monotonicity fails. If $n=0,1$ then $\mathrm{P}\{N>n\}=1$. If $n \geq 2$ then $\mathrm{P}\{N>$ $n\}=\mathrm{P}\left\{X_{1}<\cdots<X_{n}\right\}+\mathrm{P}\left\{X_{1}>\cdots+X_{n}\right\}=2 \mathrm{P}\left\{X_{1}<\cdots<X_{n}\right\}$, because the X_{i} 's cannot have ties with positive probability. Since $\left(X_{1}, \ldots, X_{n}\right)$ has the same distribution as $\left(X_{\pi(1)}, \ldots, X_{\pi(n)}\right)$ for all permutations π of $\{1, \ldots, n\}$, and since there must exist a permutation π such that $X_{\pi(1)}<\cdots<X_{\pi(n)}$, it follows that $\mathrm{P}\{N>n\}=2 / n!$. Hence, $\mathrm{E} N=1+2 \sum_{n=2}^{\infty}(1 / n!)=2 e-3$.

