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6.17. Because X is a.s. integer-valued, we can write
∞

∑
i=1
1{X≥i} =

∞

∑
i=1

∞

∑
j=i
1{X= j} =

∞

∑
j=0

j1{X= j} = X a.s.

Take expectations to finish the derivation of the first claim. A useful, but equivalent, formulation is that when X
is Z+-valued then EX = ∑∞

n=0 P{X > n}. This is the variant we use below.

1. Note that for all i ∈ {2, . . . ,k},

P{X(k)> i}= 1·
(
1− 1

2k−1

)
·
(
1− 1

2k−2

)
· · ·

(
1− 1

2k− i+1

)
=
2k−2
2k−1 ·

2k−3
2k−2 · · · 2k− i

2k− i+1 =
2k− i
2k−1 .

If i > k, then P{X(k) > i} = 0, and yet P{X(k) > 0} = P{X(k) > 1} = 1. By these remarks and the first
part,

E[X(k)] =
∞

∑
i=0
P{X(k) > i} = 2+

k

∑
i=2

2k− i
2k−1 = 2+

k

∑
i=2

(
1− i−1

2k−1

)
= k−

k−1

∑
j=1

j
2k−1 =

3k2− k
4k−2 .

An amusing aside: E[X(k)]∼ 3k/4 as k→ ∞.
2. Let N denote the first time monotonicity fails. If n = 0,1 then P{N > n} = 1. If n ≥ 2 then P{N >

n} = P{X1 < · · · < Xn}+P{X1 > · · ·+Xn} = 2P{X1 < · · · < Xn}, because the Xi’s cannot have ties with
positive probability. Since (X1 , . . . ,Xn) has the same distribution as (Xπ(1) , . . . ,Xπ(n)) for all permutations
π of {1 , . . . ,n}, and since there must exist a permutation π such that Xπ(1) < · · · < Xπ(n), it follows that
P{N > n} = 2/n!. Hence, EN = 1+2∑∞

n=2(1/n!) = 2e−3.

6.18. First consider the case where X is bounded a.s. Note that ‖X−EX‖22 =VarX = E[X2]− (EX)2 = 0. Therefore,
X = EX a.s. That is, X is a constant a.s.
In the general case Xa,b = 1{X∈[a,b]} is a bounded random variable for all a ≤ b. Thus, it is a.s. a constant;
i.e., P{X ∈ [a,b]} = 0 or 1. Therefore, we can find a nested sequence [ai,bi] ⊃ [ai+1,bi+1] such that P{X ∈
[ai,bi] for all i≥ 1} = 1 (why?). Because ∩∞i=1[ai,bi] = {x} for some x ∈ R, continuity of P ensures that P{X =
x} = limi→∞P{X ∈ [ai,bi]} = 1.

6.19. Because P{X1 > x} = e−λx for all x > 0, P{Xn > c lnn} = n−cλ for all n large. This sums iff cλ > 1. By
the Borel–Cantelli lemma, limsupn(Xn/ lnn) ≤ c a.s. if c > λ−1 and limsupn(Xn/ lnn) ≥ c a.s. if c ≤ λ−1.
Therefore, limsupn(Xn/ lnn) = λ−1 a.s. (why?). For the other limit-result use the same method, but apply it to
P{lnXn <−c lnn} = P{Xn < n−c} = 1− exp(−λn−c)∼ λn−c.

6.20. Let a= εEY to find that

EY = E[Y ;Y ≤ a]+E[Y ;Y ≥ a]≤ a+
√
E[Y 2]P{Y ≥ a}.

We have appealed to the Cauchy–Bunyakovsky–Schwarz inequality in the last line. Solve and square to find
that

((1− ε)EY )2 ≤ E[Y 2]P{Y > εEY} .

This is the Paley–Zygmund inequality. Apply this to Y = ∑ni=1 1Ei : EY = ∑ni=1 P(Ei) and E[Y 2] = ∑ni, j=1 P(Ei∩
Ej); whence,

P

{
∞

∑
i=1
1Ei ≥ ε

n

∑
i=1
P(Ei)

}
≥ P

{
n

∑
i=1
1Ei ≥ ε

n

∑
i=1
P(Ei)

}
≥ (1− ε)2

(∑ni=1 P(Ei))
2

∑ni, j=1 P(Ei∩Ej)
.

Let n ↑ ∞ and appeal to the continuity properties of P to find that P{∑i 1Ei = ∞}≥ (1− ε)2/γ for all ε > 0. Let
ε ↓ 0 to finish.


