6.14. By Chebyshev's inequality, for all $\varepsilon>0$,

$$
\mathrm{P}\left\{\left|\frac{S_{n}-n \mu}{n}\right|>\varepsilon\right\} \leq \frac{\operatorname{Var} S_{n}}{n^{2} \varepsilon^{2}}
$$

Thus there exists $C>0$ and $n_{0} \geq 1$ such that for all $n \geq n_{0}$, the preceding probability is $\leq C \varepsilon^{-2} n^{-\delta}$. Replace n by n^{k}, where $k>1 / \delta$ is a fixed integer, and then use Borel-Cantelli, to find that $S_{n^{k}} / n^{k} \rightarrow \mu$. If $n^{k} \leq m \leq(n+1)^{k}$ then

$$
\frac{S_{m}}{m} \leq \frac{S_{(n+1)^{k}}}{n^{k}}=\frac{S_{(n+1)^{k}}}{(n+1)^{k}} \frac{(n+1)^{k}}{n^{k}} \sim \mu
$$

Similarly, $S_{m} / m \geq \mu+o(1)$ a.s. Thus, $S_{m} / m \sim \mu$ a.s. Now suppose the X_{i} 's are identically distributed as well as uncorrelated. Then, $\operatorname{Var} S_{n}=n \operatorname{Var} X_{1}=o\left(n^{2-\delta}\right)$ for some $\delta \in(0,2)$. Thus, $S_{n} / n \rightarrow \mathrm{E} X_{1}$ a.s.

