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6.14. By Chebyshev’s inequality, for all ε > 0,
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Thus there exists C > 0 and n0 ≥ 1 such that for all n≥ n0, the preceding probability is ≤Cε−2n−δ . Replace n
by nk, where k> 1/δ is a fixed integer, and then use Borel-Cantelli, to find that Snk/nk→ µ . If nk ≤m≤ (n+1)k
then
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Similarly, Sm/m ≥ µ +o(1) a.s. Thus, Sm/m ∼ µ a.s. Now suppose the Xi’s are identically distributed as well
as uncorrelated. Then, VarSn = nVarX1 = o(n2−δ ) for some δ ∈ (0 ,2). Thus, Sn/n→ EX1 a.s.

6.15. Choose the Xi’s to be independent, and with respective distributions, P{Xi = i} = i−2, P{Xi = 1} = 1− i−2.
Note that ∑iP{Xi '= 1} = ∑i i−2 < ∞. By the Borel–Cantelli lemma, all but a finite number of Xi’s are equal to
one a.s. Hence, ∏i Xi converges a.s. On the other hand,
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as n→ ∞. But ∏n
i=1(1+ i−1) =∏n

i=1(1+ i)/i= 1+n, because the terms telescope. Therefore, E[∏n
i=1Xi]∼ n,

and so convergence in L1 is out of the question.

6.16. Let En;= {Xn ∈ A}. Then the En’s are independent and ∑nP(En) = ∞. Apply the Borel–Cantelli lemma to
finish. If the monkey types letters at random and independently, and if the chances are the same that any given
letter is typed at any given time, then the remark about the monkey follows from the preceding computation.

6.17. Because X is a.s. integer-valued, we can write
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Take expectations to finish the derivation of the first claim. A useful, but equivalent, formulation is that when X
is Z+-valued then EX = ∑∞

n=0 P{X > n}. This is the variant we use below.

1. Note that for all i ∈ {2, . . . ,k},
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If i > k, then P{X(k) > i} = 0, and yet P{X(k) > 0} = P{X(k) > 1} = 1. By these remarks and the first
part,
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An amusing aside: E[X(k)]∼ 3k/4 as k→ ∞.
2. Let N denote the first time monotonicity fails. If n = 0,1 then P{N > n} = 1. If n ≥ 2 then P{N >

n} = P{X1 < · · · < Xn}+P{X1 > · · ·+Xn} = 2P{X1 < · · · < Xn}, because the Xi’s cannot have ties with
positive probability. Since (X1 , . . . ,Xn) has the same distribution as (Xπ(1) , . . . ,Xπ(n)) for all permutations
π of {1 , . . . ,n}, and since there must exist a permutation π such that Xπ(1) < · · · < Xπ(n), it follows that
P{N > n} = 2/n!. Hence, EN = 1+2∑∞

n=2(1/n!) = 2e−3.


