$(ii)\Rightarrow (iii)$ This follows from the following real-variable **Fact.** If $a_n/n^\rho \to 0$ for some $\rho > 0$, then $\max_{1 \le j \le n} (a_j/n^\rho) \to 0$.

6.10. (i) \Rightarrow (ii) If $X_1 \in L^p(P)$ then $\sum_{n=1}^{\infty} P\{|X_n| > \varepsilon n^{1/p}\} = \sum_{n=1}^{\infty} P\{|X_1|^p > \varepsilon^p n\} \le E\{|X_1|^p\}/\varepsilon^p$. So by the Borel-

Cantelli lemma, with probability one, $|X_n| \le \varepsilon n^{1/p}$ for all n large. This proves that $|X_n|/n^{1/p} \to 0$ a.s.

i⇒ii).

Proof: If not, then $\max_{j \le n} a_j > \varepsilon n^{\rho}$ infinitely often. But there exists n_0 such that for all $n \ge n_0$ $|a_n| \le (\varepsilon/2)n^{\rho}$. So $\max_{j \le n_0} a_j > \varepsilon n^{\rho}$ for infinitely-many n's, which is patently nonsense.