6.10. $(i) \Rightarrow$ (ii) If $X_{1} \in L^{p}(\mathrm{P})$ then $\sum_{n=1}^{\infty} \mathrm{P}\left\{\left|X_{n}\right|>\varepsilon n^{1 / p}\right\}=\sum_{n=1}^{\infty} \mathrm{P}\left\{\left|X_{1}\right|^{p}>\varepsilon^{p} n\right\} \leq \mathrm{E}\left\{\left|X_{1}\right|^{p}\right\} / \varepsilon^{p}$. So by the BorelCantelli lemma, with probability one, $\left|X_{n}\right| \leq \varepsilon n^{1 / p}$ for all n large. This proves that $\left|X_{n}\right| / n^{1 / p} \rightarrow 0$ a.s.
(ii) \Rightarrow (iii) This follows from the following real-variable Fact. If $a_{n} / n^{\rho} \rightarrow 0$ for some $\rho>0$, then $\max _{1 \leq j \leq n}\left(a_{j} / n^{\rho}\right) \rightarrow 0$.
Proof: If not, then $\max _{j \leq n} a_{j}>\varepsilon n^{\rho}$ infinitely often. But there exists n_{0} such that for all $n \geq n_{0}\left|a_{n}\right| \leq(\varepsilon / 2) n^{\rho}$. So $\max _{j \leq n_{0}} a_{j}>\varepsilon n^{\rho}$ for infinitely-many n 's, which is patently nonsense.
(iii) \Rightarrow (i) Because (iii) implies (ii), it suffices to prove that (ii) implies (i). But this too is Borel-Canelli (as in $\mathrm{i} \Rightarrow \mathrm{ii}$.

