6.1. First consider the case that $f' \ge 0$. For all $\omega \in \Omega$,

$$f(X(\boldsymbol{\omega})) = \int_0^{X(\boldsymbol{\omega})} f'(x) \, dx = \int_{-\infty}^\infty \mathbf{1}_{\{0 \le x \le X\}}(\boldsymbol{\omega}) f'(x) \, dx.$$

Assuming that we can handle product-measurability issues, it follows from Fubini–Tonelli that

$$\mathbf{E}[f(X)] = \mathbf{E}\left[\int_{-\infty}^{\infty} \mathbf{1}_{\{0 \le x \le X\}}(\boldsymbol{\omega})f'(x)\,dx\right] = \int_{0}^{\infty} \mathbf{P}\{X \ge x\}f'(x)\,dx$$

This is the desired result when $f' \ge 0$. In general, we write $f' = f'_+ - f'_-$ and define $f_{(\pm)}(x) = \int_0^x f'_{\pm}(z) dz$. The preceding development yields,

$$\mathsf{E}\left[f_{(\pm)}(X)\right] = \int_0^\infty f'_{\pm}(x)\mathsf{P}\{X \ge x\}\,dx.$$

But $f_+ - f_- = f$ (why?), whence the Problem. It suffices to prove the asserted product measurability. Evidently, f' is a product-measurable function of (x, ω) ; so is $x \mapsto \mathbf{1}_{[0,\infty)}(x)$. So it suffices to prove that $(x, \omega) \mapsto \mathbf{1}_{\{X \ge x\}}(\omega)$ is product-measurable.

Define $I_n(x, \omega) = \sum_{1 \le i < j} \mathbf{1}_{[i/n, (i+1)/n)}(x) \mathbf{1}_{[j/n, (j+1)/n)}(X(\omega))$. Each I_n is manifestly product-measurable. Therefore, so is $\mathbf{1}_{\{X>x\}}(\omega) = \lim_{n\to\infty} I_n(x, \omega)$. Therefore, $\mathbf{1}_{\{y<X\le x\}} = \mathbf{1}_{\{y<X\}} - \mathbf{1}_{\{x<X\}}$ is measurable for all x > y; hence, so is $\mathbf{1}_{\{X=x\}} = \lim_{y\uparrow x} \mathbf{1}_{\{y<X\le x\}}$. Finally, we see that $\mathbf{1}_{\{X\ge x\}}(\omega) = \mathbf{1}_{\{X>x\}}(\omega) + \mathbf{1}_{\{X=x\}}(\omega)$ is measurable.