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9.23. Choose and fix an integer k ≥ 1, and define T := inf{n ≥ 1 : Xn = k}.

P
{

max
1≤j≤n

Sj ≥ k

}
= P{T ≤ n} = P{T ≤ n , Sn ≤ k − 1} + P{Sn ≥ k}.

A.s. on {T ≤ n}, Sn = k + (Sn − ST ). By the strong Markov property, Sn − ST is independent of FT .
By symmetry, Sn − ST has the same distribution as ST − Sn = k − Sn. Therefore,

P{T ≤ n , Sn ≤ k − 1} = P{T ≤ n , k + (k − Sn) ≤ k − 1} = P{T ≤ n , Sn > k} = P{Sn ≥ k + 1}.

Parity considerations show that P{Sn ≥ k} = P{Sn ≥ k + 1}, and both are equal to P{Sn ≤ −k} by
symmetry. Therefore, P{T ≤ n} = P{Sn ≤ −k} + P{Sn ≥ k} = P{|Sn| ≥ k} as desired.

9.24. Because P{W (t) = 0} = 0 for all t > 0,

E
[∫ ∞

0
1{W (t)=0} dt

]
=

∫ ∞

0
P{W (t) = 0} dt = 0.

Thus, Z is lebesgue-null a.s. Now, Z is a.s. closed, because it is the inverse image of a closed set—
{0}—by a [a.s.] continuous map, namely W .
Next we prove that Z has no isolated points a.s. First of all note that P{W (t) > 0} = P{W (t) < 0} =
1/2. Therefore, with probability ≥ 1/2 we can find sn, tn ↓ 0 such that W (tn) > 0 and W (sn) < 0. By
a zero–one law [e.g., Problem 9.11] the probability of existence of such sn, tn’s is in fact one. Hence,
{0} is not an isolated point in Z a.s. Define for all 0 < a < b, Ta,b := inf{s ∈ (a , b) : W (s) = 0},
where inf ∅ := ∞. Ta,b is a stopping time, and conditional on {Ta,b < ∞}, W (Ta,b + ·) is a Brownian
motion independent of FTa,b . Thus, outside one null set, Ta,b is not an isolated point in Z for any
rational a < b. Consequently, Z has no isolated points a.s.
It remains to prove that a.s., Z is uncountable. Choose and fix t > 0, and note that P{W (t) = 0} = 0.
Thus, there exists a maximal [random] open interval e(t) ' t such that P{W (s) = 0 for some s ∈
e(t)} = 0. Consequently,

P
{∃t ∈ Q+ : W (s) = 0 for some s ∈ e(t)

}
= 0.

That is, Zc is a.s. a countable union of disjoint open intervals. The following fact from general topology
finishes our task. Lemma. Let X be a nonempty closed subset of R with no isolated points. Then X
is uncountable.
Proof: Without loss of generality X can be assumed to be compact, for we can replace it with
X ∩ [−n , n] otherwise. First we claim that if U ⊂ X is nonempty-open and x ∈ X, then there exists a
nonempty-open V ⊂ U such that x *∈ V̄ . The proof is easy: If x *∈ U then choose some y ∈ U ; else if
x ∈ U then there exists y ∈ U \ {x} because x is not isolated. Find nonempty open sets O1 ' x and
O2 ' y such that O1 ∩O2 = ∅. Then, V := O2 ∩ U does the job.
Now that we have proved the claim suppose f : Z+ → X is a function. We prove that f is not onto,
whence X is uncountable. Let xn := f(n) and apply the claim to find open Vn ⊂ X such that xn *∈ V̄n.
We can replace Vn by V1 ∩ · · · ∩ Vn if need be. Therefore, it follows that Vn ⊂ Vn−1 and xn *∈ V̄n. By
compactness, ∩∞n=1V̄n is not empty. It follows that any x ∈ ∩∞n=1V̄n is not in the range of f .

9.25. If s > 0 and s > w then we follow the hint and reflect at the first hitting time of s to find that

P {S(t) > s , W (t) < w} = P {W (t) > 2s− w} = P
{

N(0 , 1) >
2s− w√

t

}
.

Denote the latter by F (s , w) and let φ denote the N(0 , 1) density. Then, the joint density f(S(t),W (t))

of (S(t) ,W (t)) is

f(S(t),W (t))(s , w) = − ∂2F

∂s∂w
(s , w) = −2

t
φ′

(
2s− w√

t

)
s ≥ max(w , 0).


