9.23. Choose and fix an integer $k \ge 1$, and define $T := \inf\{n \ge 1 : X_n = k\}$.

$$P\left\{\max_{1 \le j \le n} S_j \ge k\right\} = P\{T \le n\} = P\{T \le n , S_n \le k-1\} + P\{S_n \ge k\}.$$

A.s. on $\{T \leq n\}$, $S_n = k + (S_n - S_T)$. By the strong Markov property, $S_n - S_T$ is independent of \mathcal{F}_T . By symmetry, $S_n - S_T$ has the same distribution as $S_T - S_n = k - S_n$. Therefore,

$$P\{T \le n , S_n \le k-1\} = P\{T \le n , k+(k-S_n) \le k-1\} = P\{T \le n , S_n > k\} = P\{S_n \ge k+1\}.$$

Parity considerations show that $P\{S_n \ge k\} = P\{S_n \ge k+1\}$, and both are equal to $P\{S_n \le -k\}$ by symmetry. Therefore, $P\{T \le n\} = P\{S_n \le -k\} + P\{S_n \ge k\} = P\{|S_n| \ge k\}$ as desired.