9.19. Evidently,

$$\left\|\int f\,dW\right\|_2^2 = \mathbf{E}\left(\iint W(s)W(t)f'(s)f'(t)\,ds\,dt\right) = \iint \min(s\,,t)f'(s)f'(t)\,ds\,dt.$$

By symmetry and integration by parts,

$$\left\|\int f\,dW\right\|_{2}^{2} = 2\int_{0}^{\infty}\int_{s}^{\infty}sf'(s)f'(t)\,dt\,ds = -2\int_{0}^{\infty}sf(s)f'(s)\,ds = \int_{0}^{\infty}f^{2}(s)\,ds = \|f\|_{L^{2}(m)}^{2}.$$

Take C_c^{∞} functions f_n that converge to $f \in L^2(m)$. The preceding proves that

$$\left\| \int (f_k - f_n) \, dW \right\|_2^2 = \|f_k - f_n\|_{L^2(m)}^2.$$

Thus, $\{\int f_n dW\}_{n=1}^{\infty}$ is a Cauchy sequence in $L^2(\mathbf{P})$, and hence converges; call the limit $\int f dW$. Evidently, $\|\int f dW\|_2 = \|f\|_{L^2(m)}$ for all $f \in L^2(m)$.

1. We just proved that

$$\operatorname{E}\left[\left(\int (f-g)\,dW\right)^2\right] = \int (f-g)^2\,dm.$$

The left-hand side is equal to $||f||_{L^2(m)}^2 + ||g||_{L^2(m)}^2 - 2\mathbb{E}[\int fg \, dW]$. The right-hand side is equal to $||f||_{L^2(m)}^2 + ||g||_{L^2(m)}^2 - 2\int fg \, dm$. Whence follows the assertion.

- 2. If $f \in C_c^{\infty}$ then $G(f) = -\int W(s)f'(s) ds$ is Gaussian because $\int W(s)g(s) ds$ can be approximated by linear combinations of W(s)'s. Because weak limits of Gaussians are themselves Gaussians the claim follows.
- 3. $E[G(\phi_i)G(\phi_j)] = \int \phi_i \phi_j \, dm = 0$ unless i = j, in which case $E[G^2(\phi_i)] = \|\phi_i\|_{L(m)}^2 = 1$. Uncorrelated Gaussian are independent, so $\{G(\phi_i)\}_{i=1}^{\infty}$ is an i.i.d. sequence of N(0, 1)'s.