9.13. If $a>0$, then $T_{a}>t$ if and only if $\sup _{s<t} W(s)<a$. Therefore,

$$
\mathrm{P}\left\{T_{a} \leq t\right\}=\mathrm{P}\left\{\sup _{s \in[0, t]} W(s)>a\right\}=1-\mathrm{P}\{-a \leq W(t) \leq a\} ;
$$

cf. the reflection principle. But $W(t)=t^{-1 / 2} N(0,1)$. Therefore,

$$
\mathrm{P}\left\{T_{a} \leq t\right\}=1-\mathrm{P}\left\{-\frac{a}{\sqrt{t}} \leq N(0,1) \leq \frac{a}{\sqrt{t}}\right\}=2 \mathrm{P}\left\{N(0,1)>\frac{a}{\sqrt{t}}\right\},
$$

by symmetry. Therefore, the density function $f_{T_{a}}$ of T_{a} is

$$
f_{T_{a}}(t)=\frac{\partial}{\partial t} \mathrm{P}\left\{T_{a} \leq t\right\}=a t^{-3 / 2} f_{N(0,1)}\left(\frac{a}{\sqrt{ } t}\right),
$$

using obvious notation. In the case that $a>0$, the form of the density of T_{a} follows immediately from $f_{N(0,1)}(x)=(2 \pi)^{-1 / 2} \exp \left(-x^{2} / 2\right)$. When $a<0$, the density is manifestly zero.
To compute $E e^{i \xi T_{a}}$ we first choose and fix some $\lambda>0$ and define

$$
M(t):=\exp \left(\lambda W(t)-\frac{\lambda^{2}}{2} t\right) .
$$

Then, $\left\{M\left(t \wedge T_{a}\right)\right\}_{t \geq 0}$ is a non-negative mean-one martingale that is a.s. bounded above by $\exp (\lambda a)$. Thanks to optional stopping,

$$
\mathrm{E} \exp \left(\lambda a-\frac{\lambda^{2} T_{a}}{2}\right)=1
$$

That is,

$$
\begin{equation*}
\mathrm{E} e^{-s T_{a}}=\exp (-a \sqrt{2 s}) \quad \forall s \geq 0 \tag{9.2}
\end{equation*}
$$

Naiively put $s:=-i \xi$ to "find" that

$$
E e^{i \xi T_{a}}=\exp (a \sqrt{2 \xi}) \quad{ }^{\forall} \xi \in \mathbf{R} .
$$

This is actually the correct answer. Here is a way to prove this: The left-hand side of (9.2) is analytic in $s \in \mathbf{C}$, and the right-hand side is analytic on $\{z \in \mathbf{C}: \operatorname{Re} z \geq 0\}$. Analytic continuation does the rest. In order to finish, we need to verify that $\left\{T_{a}\right\}_{a \geq 0}$ has i.i.d. increments. Let $a, b \geq 0$ be fixed, and note that $T_{a+b}-T_{a}$ is the first time the process $t \mapsto W\left(T_{a}+t\right)-W\left(T_{a}\right)$ hits b. The strong Markov property of W proves that $T_{a+b}-T_{a}$ is independent of $\mathcal{F}_{T_{a}}$ [and thence T_{a}], and has the same distribution as T_{b}.

