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9.12. Note that {Wm(t)}∞m=1 is a sum of independent, mean-zero random variables for each fixed t ≥ 0.
Therefore, {Wm(t) −W2n(t)}m≥2n is a mean-zero martingale with respect to the filtration {Gk}∞k=1
generated by the Xi’s. This proves part 1.
Evidently,
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The right-hand side is at least supt(E[Wm(t)−W2n(t) | G2n ])2 by conditional Jensen. This proves part
2. To prove part 3 note that by Doob’s inequality, for all λ > 0,
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cf. (9.17). The result follows from the Borel–Cantelli lemma.

9.13. If a > 0, then Ta > t if and only if sups≤t W (s) < a. Therefore,
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cf. the reflection principle. But W (t) = t−1/2N(0, 1). Therefore,
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by symmetry. Therefore, the density function fTa of Ta is
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using obvious notation. In the case that a > 0, the form of the density of Ta follows immediately from
fN(0,1)(x) = (2π)−1/2 exp(−x2/2). When a < 0, the density is manifestly zero.

To compute EeiξTa we first choose and fix some λ > 0 and define
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Then, {M(t ∧ Ta)}t≥0 is a non-negative mean-one martingale that is a.s. bounded above by exp(λa).
Thanks to optional stopping,
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That is,
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∀s ≥ 0. (9.2)

Naiively put s := −iξ to “find” that
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∀ξ ∈ R.

This is actually the correct answer. Here is a way to prove this: The left-hand side of (9.2) is analytic
in s ∈ C, and the right-hand side is analytic on {z ∈ C : Rez ≥ 0}. Analytic continuation does the
rest. In order to finish, we need to verify that {Ta}a≥0 has i.i.d. increments. Let a, b ≥ 0 be fixed,
and note that Ta+b − Ta is the first time the process t '→ W (Ta + t) − W (Ta) hits b. The strong
Markov property of W proves that Ta+b−Ta is independent of FTa [and thence Ta], and has the same
distribution as Tb.


