Sctrore 7

Expectation

The expectation EX—some times also written as E(X)—of a random vari-
able X is defined formally as

EX =) xP{X = x}.

If X has infinitely-many possible values, then the preceding sum must also
be defined. This happens, for example, if

S flflx) < co.

Also, EX is always defined if P{X > 0} = 1 [but EX might be oo] , or if
P{X <0} =1 [but EX might be —o0] .

Other equivalent terms for “expectation” are “mean,” “expected value,”
and “mean value.” People use these terms interchangeably.

Example 1. If X takes the values +1 with respective probabilities 1/2 each,
then EX = 0. For example, suppose you play a fair game; if you win then
you win $1; else, you lose $1. If X denotes your total winnings after one
play [negative win means loss] then EX = 0.

Example 2. There are N tickets with face values xy, ..., xy. We select one
at random and let X denote the face value of the randomly-selected ticket.

Then,
1 1
EX — <N”1> - <N”N> S R .}

That is, in this example, the expected draw is the ordinary average of the
box.
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Example 3 (Constant random variables). Every number ¢ is a random
variable [P{c = x} =0 if x + 0, and P{c = c} = 1]. Therefore, Ec = c.

Example 4 (Indicators). Let A denote an event, and form a random variable
Iy by setting I5 := 1 if A occurs, and [, := O otherwise. Note P{I, =1} =
DP(A) and P{Ip = 0} = P(A€). Therefore,

E(Ix) = P(A).

Theorem 1 (Addition rule for expectations). Suppose X and Y are random
variables, defined on the same sample space, such that EX and EY are
well defined and finite. Then, for all constants a and 5,

ElaX + BY) = aEX + BEV.

Proof. If we could prove that
E(cZ) = cE(Z) (10)

for every constant ¢ and random variable Z. Then, aEX = E(aX) and
BEY = E(BY). Therefore, we would have to show that E(X’' + Y') = E(X') +
E(Y') where X' := aX and V' := BY. That is, (10) reduces the problem to
a=p=1.

In order to prove (10) we compute:

ZxP{cZ =x}= ZIP{Z = %}
x (el

x/c] to find that

I

E(cZ)

I

Change variables [u :

E(cZ)=cY ‘uP{Z = u} = cEZ,

as asserted.

It remains to prove the theorem with a = g = 1. First of all note that

P{X+V=a}=) P{X=b,Y=a-b}:=) flb,a-b)
b b

[f denotes the joint mass function of (X, V)] Therefore,

EX+Y)=) aP{X+V=a}=> a) flb,a-b)
a a b
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We can write a as (@ — b) + b and substitute:
EX+Y)=) (a=b)> flb,a=b)+Y Y bflb,a-b).
a b a b

Ty Ty

In order to compute Ty, we change the label of the variables [c := a — b]:

Ti=>Y cY flb,c)=) cP{V=c}=EV.
c b c

N——
marginal of ¥

As regards Ty, we reorder the sums first, and then relabel [c := a — b]:
Ty=>) b)Y flb,a—-b)=>) b flb,c) =) bP{X-x}=EX
b a b c b

marginal of X

The theorem follows. O

The addition rule of expectation yields the following by induction:

Corollary 1. If Xj,..., Xn are all random variables with well-defined
finite expectations, then

E(X1+ -+ Xp) = EX1 +---+ EX,.

Example 5 (Method of the indicators). The “method of the indicators” is
an application of the previous example and the previous corollary in the
following way: If Ay, ..., Ay are events, then

E(1A1 + -‘-—I—ZAN) = p(A1) + - —I—P(AN).

You should note that Ia, + - - - + Ia,, denotes the number of events among
Ay, .., Ay which occur.

We will make several uses of the method of the indicators in this
course. The following is our first example.

Example 6 (The mean of the binomials). Let X have the binomial distri-
bution with parameters n and p. What is EX? Of course, we can use the
definition of expectations and write

EX = kzi(;k <Z> pE( — p)nk.

But this is not a simple-to-understand expression. Here is a more effec-
tive approach: We can realize X = I5, + --- + I, where Ay, ..., A, are
independent events with P(Ay) = --- = P(A,) = p. In particular,

EX = P(A4) + - + P(A,) = np.
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Thus, for example, in 10 tosses of a fair coin we expect np = 10 x % =5
heads.

Example 7. For all constants a and b, and all random variables X,
E(@aX + b) = aE(X) + b,

provided that EX is well defined. For instance, suppose the temperature
of a certain object, selected on a random day, is a random variable with
mean 34° Fahrenheit. Then, the expected value of the temperature of the
object in Celsius is

§X(Ex—32)=gx(34—32>=9.

Sort out the details.

Finally, two examples to test the boundary of the theory so far.

Example 8 (A random variable with infinite mean). Let X be a random
variable with mass function,
i ifx=1,2
P{X =x} =4 Cx2 ST
0 otherwise,

where C = Y7°(1/%). Then,

But P{X < oo} = Y772, 1/(Cj?) = 1.

Example 9 (A random variable with an undefined mean). Let X be a ran-
dom with mass function,

1

P{X =x} =1 Dx?

0 otherwise,

if x =41,£2,..,

where D = Y., ., (1/j%). Then, EX is undefined. If it were defined,
then it would be

n,}}lriloo Z D] Z D] Bnm—wo Z Z

j=—m j= J**m

But the limit does not exist. The rough reason is that if N is large, then
Z]N: 1(1/j) is very nearly In N plus a constant (Euler’s constant). “Therefore,”
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if n, m are large, then
-1 n
1 1
g f,+§ - z—lnm+lnn=ln<£>.
— ] ] m
j=—m j=1

If n = m — oo, then this is zero; if m > n — oo, then this goes to —o0o; if
n > m — oo, then it goes to +oo.



