
Expectation
The expectation EX—some times also written as E(X)—of a random vari-
able X is defined formally as

EX = ∑
x

xP{X = x}.

If X has infinitely-many possible values, then the preceding sum must also
be defined. This happens, for example, if

∑
x

|x|f (x) < ∞.

Also, EX is always defined if P{X ≥ 0} = 1 [but EX might be ∞] , or if
P{X ≤ 0} = 1 [but EX might be −∞] .

Other equivalent terms for “expectation” are “mean,” “expected value,”
and “mean value.” People use these terms interchangeably.
Example 1. If X takes the values ±1 with respective probabilities 1/2 each,
then EX = 0. For example, suppose you play a fair game; if you win then
you win $1; else, you lose $1. If X denotes your total winnings after one
play [negative win means loss] then EX = 0.

Example 2. There are N tickets with face values x1, . . . , xN . We select one
at random and let X denote the face value of the randomly-selected ticket.
Then,

EX =
( 1

N × x1
)

+ · · · +
( 1

N × xN
)

= x1 + · · · + xN
N .

That is, in this example, the expected draw is the ordinary average of the
box.
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Example 3 (Constant random variables). Every number c is a random
variable [P{c = x} = 0 if x &= 0, and P{c = c} = 1]. Therefore, Ec = c.

Example 4 (Indicators). Let A denote an event, and form a random variable
IA by setting IA := 1 if A occurs, and IA := 0 otherwise. Note P{IA = 1} =
P(A) and P{IA = 0} = P(Ac). Therefore,

E(IA) = P(A).

Theorem 1 (Addition rule for expectations). Suppose X and Y are random
variables, defined on the same sample space, such that EX and EY are
well defined and finite. Then, for all constants α and β,

E(αX + βY ) = αEX + βEY .

Proof. If we could prove that
E(cZ) = cE(Z) (10)

for every constant c and random variable Z . Then, αEX = E(αX) and
βEY = E(βY ). Therefore, we would have to show that E(X′ + Y ′) = E(X′) +
E(Y ′) where X′ := αX and Y ′ := βY . That is, (10) reduces the problem to
α = β = 1.

In order to prove (10) we compute:
E(cZ) = ∑

x
xP{cZ = x} = ∑

x
xP

{
Z = x

c
}

= c ∑
x

(x
c

)
P

{
Z = x

c
}

.

Change variables [u := x/c] to find that
E(cZ) = c ∑

u
uP{Z = u} = cEZ,

as asserted.
It remains to prove the theorem with α = β = 1. First of all note that

P{X + Y = a} = ∑
b

P{X = b , Y = a − b} := ∑
b

f (b , a − b).

[f denotes the joint mass function of (X , Y ).] Therefore,
E(X + Y ) = ∑

a
aP{X + Y = a} = ∑

a
a ∑

b
f (b , a − b).
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We can write a as (a − b) + b and substitute:
E(X + Y ) = ∑

a
(a − b) ∑

b
f (b , a − b)

︸ ︷︷ ︸
T1

+ ∑
a

∑
b

bf (b , a − b)
︸ ︷︷ ︸

T2

.

In order to compute T1, we change the label of the variables [c := a − b]:
T1 = ∑

c
c ∑

b
f (b , c)

︸ ︷︷ ︸
marginal of Y

= ∑
c

cP{Y = c} = EY .

As regards T2, we reorder the sums first, and then relabel [c := a − b]:
T2 = ∑

b
b ∑

a
f (b , a − b) = ∑

b
b ∑

c
f (b , c)

︸ ︷︷ ︸
marginal of X

= ∑
b

bP{X = x} = EX.

The theorem follows. !

The addition rule of expectation yields the following by induction:
Corollary 1. If X1, . . . , Xn are all random variables with well-defined
finite expectations, then

E(X1 + · · · + Xn) = EX1 + · · · + EXn.

Example 5 (Method of the indicators). The “method of the indicators” is
an application of the previous example and the previous corollary in the
following way: If A1, . . . , AN are events, then

E (IA1 + · · · + IAN ) = P(A1) + · · · + P(AN ).
You should note that IA1 + · · · + IAN denotes the number of events among
A1, . . . , AN which occur.

We will make several uses of the method of the indicators in this
course. The following is our first example.
Example 6 (The mean of the binomials). Let X have the binomial distri-
bution with parameters n and p. What is EX? Of course, we can use the
definition of expectations and write

EX =
n∑

k=0
k

(n
k

)
pk(1 − p)n−k.

But this is not a simple-to-understand expression. Here is a more effec-
tive approach: We can realize X = IA1 + · · · + IAn where A1, . . . , An are
independent events with P(A1) = · · · = P(An) = p. In particular,

EX = P(A1) + · · · + P(An) = np.
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Thus, for example, in 10 tosses of a fair coin we expect np = 10 × 1
2 = 5

heads.

Example 7. For all constants a and b, and all random variables X,
E(aX + b) = aE(X) + b,

provided that EX is well defined. For instance, suppose the temperature
of a certain object, selected on a random day, is a random variable with
mean 34o Fahrenheit. Then, the expected value of the temperature of the
object in Celsius is

5
9 × (EX − 32) = 5

9 × (34 − 32) = 10
9 .

Sort out the details.
Finally, two examples to test the boundary of the theory so far.

Example 8 (A random variable with infinite mean). Let X be a random
variable with mass function,

P{X = x} =



1
Cx2 if x = 1, 2, . . .,
0 otherwise,

where C = ∑∞
j=1(1/j2). Then,

EX =
∞∑

j=1
j · 1

Cj2 = ∞.

But P{X < ∞} = ∑∞
j=1 1/(Cj2) = 1.

Example 9 (A random variable with an undefined mean). Let X be a ran-
dom with mass function,

P{X = x} =



1
Dx2 if x = ±1, ±2, . . .,
0 otherwise,

where D = ∑
j=±1,±2,···(1/j2). Then, EX is undefined. If it were defined,

then it would be

limn,m→∞




−1∑
j=−m

j
Dj2 +

n∑
j=1

j
Dj2


 = 1

D limn,m→∞




−1∑
j=−m

1
j +

n∑
j=1

1
j


 .

But the limit does not exist. The rough reason is that if N is large, then∑N
j=1(1/j) is very nearly ln N plus a constant (Euler’s constant). “Therefore,”
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if n, m are large, then


−1∑
j=−m

1
j +

n∑
j=1

1
j


 ≈ − ln m + ln n = ln

( n
m

)
.

If n = m → ∞, then this is zero; if m * n → ∞, then this goes to −∞; if
n * m → ∞, then it goes to +∞.


