
Random Variables and their distributions
We would like to say that a random variable X is a “numerical outcome
of a complicated and/or random experiment.” This is not sufficient. For
example, suppose you sample 1,500 people at random and find that their
average age is 25. Is X = 25 a “random variable”? Surely there is nothing
random about the number 25!

What is “random” here is the procedure that led to the number 25.
This procedure, for a second sample, is likely to lead to a different number.
Procedures are functions, and thence
Definition 1. A random variable is a function X from Ω to some set D
which is usually [for us] a subset of the real line R, or d-dimensional space
Rd .

In order to understand this, let us construct a random variable that
models the number of dots in a roll of a fair six-sided die.

Define the sample space,
Ω = {1, 2, 3, 4, 5, 6} .

We assume that all outcome are equally likely [fair die].
Define X(ω) = ω for all ω ∈ Ω, and note that for all k = 1, . . . , 6,

P ({ω ∈ Ω : X(ω) = k}) = P({k}) = 1
6 . (7)

This probability is zero for other values of k. Usually, we write {X ∈ A} in
place of the set {ω ∈ Ω : X(ω) ∈ A}. In this notation, we have

P{X = k} =
{1

6 if k = 1, . . . , 6,
0 otherwise. (8)
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This is a math model for the result of a coin toss.

The distribution of a random variable
Suppose X is a random variable, defined on some probability space Ω. By
the distribution of X we mean the collection of probabilities P{X ∈ A}, as
A ranges over all sets that could possibly contain X in them.

If X takes values in a finite, or countably-infinite set, then we say that
X is a discrete random variable. Its distribution is called a discrete dis-
tribution. The function

f (x) = P{X = x}
is then called the mass function of X. Be warned, however, that your
textbook does not use this terminology.

The following simple result tells us that if we know the mass function
of X, then we know the entire distribution of X as well.
Proposition 1. If X is a discrete random variable with mass function f ,
then P{X ∈ A} = ∑

z∈A P{X = z} for all at-most countable sets A.
It might be useful to point out that a set A is “at most countable” if A is

either a finite set, or its elements can be labeled as 1,2,. . . . [A theorem of
G. Cantor states that the real line is not at most countable.]
Proof. The event {X ∈ A} can be written as a disjoint union ∪z∈A{X = z}.
Now apply the additivity rule of probabilities. !

An example. Suppose X is a random variable whose distribution is given
by

P{X = 0} = 1
2 , P{X = 1} = 1

4 , P{X = −1} = 1
4 .

What is the distribution of the random variable Y := X2? The possible
values of Y are 0 and 1; and
P{Y = 0} = P{X = 0} = 1

2 , whereas P{Y = 1} = P{X = 1}+P{X = −1} = 1
2 .

The binomial distribution
Suppose we perform n independent trials; each trial leads to a “success”
or a “failure”; and the probability of success per trial is the same number
p ∈ (0 , 1).

Let X denote the total number of successes in this experiment. This is
a discrete random variable with possible values 0, . . . , n. We say then that
X is a binomial random variable [“X = Bin(n , p)”].



Joint distributions 33

Math modelling questions:
• Construct an Ω.
• Construct X on this Ω.

We saw in Lecture 7 that

P{X = x} =
{(n

x
)px(1 − p)n−x if x = 0, . . . , n,

0 otherwise.

An example. Consider the following sampling question: Ten percent of
a certain population smoke. If we take a random sample [without re-
placement] of 5 people from this population, what are the chances that
at least 2 people smoke in the sample?

Let X denote the number of smokers in the sample. Then X =
Bin(n , p) [“success” = “smoker”]. Therefore,

P{X ≥ 2} = 1 − P{X ≤ 1}
= 1 − P ({X = 0} ∪{ X = 1})
= 1 − [p(0) + p(1)]

= 1 −
[(5

0
)

0.10(1 − 0.1)5−0 +
(5

1
)

0.110.95−1
]

= 1 − 0.95 −
(

5 × 0.1 × 0.94)
.

Alternatively, we can write

P{X ≥ 2} = P ({X = 2} ∪ · · · {X = n}) =
5∑

j=2
P{X = j},

and then plug in P{X = j} = (5
j
)0.1j0.95−j for j = 0, . . . , 5.

Joint distributions
Suppose X and Y are both random variables defined on the same sam-
ple space Ω [for later applications, this means that X and Y are defined
simultaneously in the same problem]. Then their joint distribution is the
collection of all probabilities of the form P{X ∈ A , Y ∈ B}, as A and B
range over all possible sets, respectively in which X and Y could possibly
land. An argument similar to the one that implied Proposition 1 shows
that

P{X ∈ A , Y ∈ B} = ∑
x∈A,y∈B

P{X = x , Y = y}.
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Therefore, in order to know the joint distribution of X and Y it suffices to
know the joint mass function

f (x , y) = P{X = x , Y = y} for all x, y.
[Warning: Your textbook writes f (x , y) as P(x , y), and does not refer to it
as a joint mass function.]

If we know the joint mass function, then we can compute the individual
[also known as marginal] mass functions of X and Y as follows:

P{X = x} = ∑
b

P{X = x , Y = b}

P{Y = y} = ∑
c

P{X = c , Y = y}.

The term “marginal” comes from examples of the following type:
An example (Two draws at random, Pitman, p. 144). We make two
draws at random, without replacement, from a box that contains tick-
ets numbered 1, 2, and 3. Let X denote the value of the first draw and
Y the value of the second draw. The following tabulates the function
f (x , y) = P{X = x , Y = y} for all possible values of x and y :

possible value for X dist of Y
1 2 3 (row sums)

possible 3 1/6 1/6 0 1/3
values 2 1/6 0 1/6 1/3
for Y 1 0 1/6 1/6 1/3

dist of X 1/3 1/3 1/3 1
(column sums) (total sum)

Thus, for example,
P{X = Y} = f (1 , 1) + f (2 , 2) + f (3 , 3) = 0 + 0 + 0 = 0,

P{X > Y} = f (2 , 1) + f (3 , 1) + f (3 , 2) = 1
6 + 1

6 + 1
6 = 1

2 ,
and

P{X + Y = 3} = f (1 , 2) + f (2 , 1) = 1
6 + 1

6 = 1
3 .

In fact, the mass function for Z := X + Y is given below:
P{Z = 3} = 1

3 , P{Z = 5} = 2
3 .

When we know the joint mass function of X and Y , we are also able
to make conditional computations. For instance,
P(Y = y | X = x) = P{X = x , Y = y}

P{X = x} = f (x , y)∑
b P{X = x , Y = b} = f (x , y)∑

b f (x , b) .
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Note that as a function of y , the preceding gives a distribution of probabil-
ities. But as a function of x it has no particular structure.
More on the previous example. In the previous example,

P(Y = 1 | X = 2) = f (2 , 1)
f (2 , 1) + f (2 , 2) + f (2 , 3) = 1/6

1/3 = 1
2 .

And
P(Y = 3 | X = 2) = 1

2 also.
In other words:

(1) The [marginal] distribution of Y is 1/3 probability on each of the
possible values 1, 2, and 3;

(2) However, if we are told that X = 2, then the [conditional] distribu-
tion of Y is 1/2 probability on the values 1 and 3 each.

(3) What if we are told that X = 3? How about the conditional distri-
bution of X, given that Y = 1?

Independence
If X and Y are jointly distributed random variables, then [by the conditional
probabilities formula]

P{X = x , Y = y} = P{X = x} · P(Y = y | X = x)
= P{Y = y} · P(X = x | Y = y). (9)

Definition 2. X and Y are said to be independent if
P{X = x , Y = y} = P{X = x} · P{Y = y} for all possible x, y.

Thanks to (9):
(1) X and Y are independent if
P(X = x | Y = y) = P{X = x} for all possible values of x, y.
(2) Equivalently, X and Y are independent if
P(Y = y | X = x) = P{Y = y} for all possible values of x, y.

By Rule 3 of probabilities,
P{X ∈ A , Y ∈ B} = ∑

x∈A

∑
y∈B

P{X = x , Y = y}.

Therefore, if X and Y are independent, then P{X ∈ A , Y ∈ B} = P{X ∈
A} · P{Y ∈ B}. And the converse is obvious if you consider sets A and B
that have one element in them each.
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Several random variables
If X1, . . . , Xn are random variables, then we can consider their joint mass
function

f (x1 , . . . , xn) := P{X1 = x1 , . . . , Xn = xn}.
And X1, . . . , Xn are independent if

f (x1 , . . . , xn) = P{X1 = x1} × · · · × P{Xn = xn} for all x1, . . . , xn.


