
Unordered Selection, continued
Let us recall the following:
Theorem 1. The number of ways to create a team of r things among n
is “n choose r.” Its numerical value is(n

r
)

= n!
r!(n − r)! .

Example 1. If there are n people in a room, then they can shake hands
in (n

2
) many different ways. Indeed, the number of possible hand shakes

is the same as the number of ways we can list all pairs of people, which
is clearly (n

2
). Here is another, equivalent, interpretation. If there are n

vertices in a “graph,” then there are (n
2
) many different possible “edges”

that can be formed between distinct vertices. The reasoning is the same.

Example 2 (Recap). There are (52
5

) many distinct poker hands.

Example 3 (Flushes in poker). The number of all possible diamond flushes
[all suits are diamonds] in a 5-card hand is (13

5
). This is also the number

of heart, clubs, and spade flushes. Therefore,
P(flush) = 4P(diamond flush)

= 4 ×
(13

5
)

(52
5

) .

It is important that you check that this answer agrees with our previous
solution to this very same problem (Example 4 on page 10).
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Example 4 (Pairs in poker). The number of different “pairs” [a, a, b, c, d]
is

13︸︷︷︸
choose the a

×
(4

2
)

︸︷︷︸
deal the two a’s

×
(12

3
)

︸ ︷︷ ︸
choose the b, c, and d

× 43︸︷︷︸
deal b, c, d

.

Therefore,
P(pairs) = 13 × (4

2
) × (12

3
) × 43

(52
5

) ≈ 0.42.

Example 5 (Poker). Let A denote the event that we get two pairs [a, a, b, b, c].
Then,

|A| =
(13

2
)

︸ ︷︷ ︸
choose a, b

×
(4

2
)2

︸ ︷︷ ︸
deal the a, b

× 13︸︷︷︸
choose c

× 4︸︷︷︸
deal c

.

Therefore,
P(two pairs) =

(13
2

) × (4
2
)2 × 13 × 4(52
5

) ≈ 0.06.

Example 6. How many subsets does {1 , . . . , n} have? Assign to each
element of {1 , . . . , n} a zero [“not in the subset”] or a one [“in the subset”].
Thus, the number of subsets of a set with n distinct elements is 2n .

Example 7. Choose and fix an integer r ∈ {0 , . . . , n}. The number of
subsets of {1 , . . . , n} that have size r is (n

r
). This, and the preceding proves

the following amusing combinatorial identity:
n∑

j=0

(n
j
)

= 2n.

You may need to also recall the first principle of counting.
The preceding example has a powerful generalization.

Theorem 2 (The binomial theorem). For all integers n ≥ 0 and all real
numbers x and y ,

(x + y)n =
n∑

j=0

(n
j
)

xjyn−j .
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Remark 1. When n = 2, this yields the familiar algebraic identity
(x + y)2 = x2 + 2xy + y2.

For n = 3 we obtain
(x + y)3 =

(3
0
)

x0y3 +
(3

1
)

x1y2 +
(3

2
)

x2y1 +
(3

3
)

x3y0

= y3 + 3xy2 + 3x2y + x3.

Proof. This is obviously correct for n = 0, 1, 2. We use induction. Induc-
tion hypothesis: True for n − 1.

(x + y)n = (x + y) · (x + y)n−1

= (x + y)
n−1∑
j=0

(n − 1
j

)
xjyn−j−1

=
n−1∑
j=0

(n − 1
j

)
xj+1yn−(j+1) +

n−1∑
j=0

(n − 1
j

)
xjyn−j .

Change variables [k = j + 1 for the first sum, and k = j for the second] to
deduce that

(x + y)n =
n∑

k=1

(n − 1
k − 1

)
xkyn−k +

n−1∑
k=0

(n − 1
k

)
xkyn−k

=
n−1∑
k=1

{(n − 1
k − 1

)
+

(n − 1
k

)}
xkyn−k + xn + yn.

But (n − 1
k − 1

)
+

(n − 1
k

)
= (n − 1)!

(k − 1)!(n − k)! + (n − 1)!
k!(n − k − 1)!

= (n − 1)!
(k − 1)!(n − k − 1)!

{ 1
n − k + 1

k
}

= (n − 1)!
(k − 1)!(n − k − 1)! × n

(n − k)k
= n!

k!(n − k)!
=

(n
k

)
.

The binomial theorem follows. !




