Lecture 5

Combinatorics

Recall the two basic principles of counting. These are facts that we all learn as children, as they motivate addition [in the first case] and multiplication [in the second case]:

First principle: *m* distinct garden forks plus *n* distinct fish forks equals *m* + *n* distinct forks.

Second principle: *m* distinct knives and *n* distinct forks equals *mn* distinct ways of taking a knife and a fork.

Unordered Selection

Example 1. 6 dice are rolled at random [all possible outcomes equally likely]. What is the probability that they all show different faces?

 $\Omega = ?$

 $|\Omega| = 6^6$.

If *A* is the event in question, then $|A| = 6 \times 5 \times 4 \times 3 \times 2 \times 1$.

Definition 1. If *k* is an integer \geq 1, then we define "*k* factorial" as the following integer:

 $k! = k \cdot (k-1) \cdot (k-2) \cdot \cdot \cdot 2 \cdot 1$.

For consistency of future formulas, we define also

 $0! = 1.$

Example 2. Five rolls of a fair die. What is *P*(*A*), where *A* is the event that all five show different faces? Note that *|A|* is equal to 6 [which face is left out] times 6^5 . Thus,

$$
P(A) = \frac{6 \cdot 5!}{6^5} = \frac{6!}{6^5}.
$$

Alternatively, we can use conditional probabilities to find this probability (check!) in this equivalent form: $\frac{9}{6} \times \frac{3}{6} \times \frac{4}{6} \times \frac{3}{6} \times \frac{2}{6} \times \frac{2}{6}$.

Ordered Selection

Example 3. Two-card poker.

$$
P(\text{doubles}) = \frac{13 \times \left(\frac{4 \times 3}{2}\right)}{\left(\frac{52 \times 51}{2}\right)}.
$$

Theorem 1. *n* objects are divided into *r* types. n_1 are of type 1; n_2 of *type* 2*;* ...; n_r are of type *r*. Thus, $n = n_1 + \cdots + n_r$. Objects of the same *type are indistinguishable. The number of permutations is*

$$
\binom{n}{n_1,\ldots,n_r}=\frac{n!}{n_1!\cdots n_r!}.
$$

Proof. Let *N* denote the number of permutations; we seek to find *N*. For every permtation in N there are $n_1! \cdots n_r!$ permutations wherein all *n* objects are treated differently. Therefore, $n_1! \cdots n_r! N = n!$. Solve to finish. \Box

Example 4. *n* people; choose *r* of them to form a "team." The number of different teams is then

$$
\frac{n!}{r!(n-r)!}.
$$

You have to choose *r* of type 1 ("put this one in the team"), and $n - r$ of type 2 ("leave this one out of the team").

Definition 2. We write the preceding count statistic as "*n* choose *r*," and write it as

$$
\binom{n}{r} = \frac{n!}{r!(n-r)!} = \frac{n!}{(n-r)!r!} = \binom{n}{n-r}.
$$

Example 5. Roll 4 dice; let *A* denote the event that all faces are different. Then,

$$
|A| = \binom{6}{4} 4! = \frac{6!}{2!} = \frac{6!}{2}.
$$

The 6-choose-4 is there because that is how many ways we can choose the different faces. Thus,

$$
P(A) = \frac{6!}{2 \times 4^6}.
$$

Example 6. There are

$$
\binom{52}{5} = 2,598,960
$$

different standard poker hands possible.