Lecture 4

Independence

• Events *A* and *B* are said to be *independent* if

$$
P(A \cap B) = P(A)P(B).
$$

Divide both sides by P(*B*), if it is positive, to find that *A* and *B* are independent if and only if

$$
P(A | B) = P(A).
$$

"Knowledge of *B* tells us nothing new about *A*."

Two experiments are *independent* if *A*1 and *A*2 are independent for all outcomes *Aj* of experiment *j*.

Example 1. Toss two fair coins; all possible outcomes are equally likely. Let H_j denote the event that the *j*th coin landed on heads, and $T_j = H_j^c$. Then,

$$
P(H_1 \cap H_2) = \frac{1}{4} = P(H_1)P(H_2).
$$

In fact, the two coins are independent because $P(T_1 \cap T_2) = P(T_1 \cap T_2) = P(T_1 \cap T_2)$ $P(H_1 \cap H_2) = 1/4$ also. Conversely, if two fair coins are tossed independently, then all possible outcomes are equally likely to occur. What if the coins are not fair, say $P(H_1) = P(H_2) = 1/4$?

• Three events *A*1*,A*2*,A*3 are *independent* if any two of them are, and $P(A_1 \cap A_2 \cap A_3) = P(A_1)P(A_2)P(A_3)$. Events *A*₁, *A*₂, *A*₃, *A*₄ are independent if any three of are, and $P(A_1 \cap A_2 \cap A_3 \cap A_4)$ = $P(A_1)P(A_2)P(A_3)P(A_4)$. And in general, once we have defined the independence of $n-1$ events, we define n events A_1, \ldots, A_n to be *independent* if any *n*−1 of them are independent, and $P(\bigcap_{j=1}^{n} A_j) = \prod_{j=1}^{n} P(j)$ \prod_i^n $j=1$ F(Aj).

- A_1, A_2, \cdots are *independent* if all finite subcollection of the A_i 's are independent. This condition turns out to be equivalent to the following: A_1, \ldots, A_n are independent for all $n \geq 2$.
- Experiments E_1, E_2, \ldots are independent if for all events A_1, A_2, \ldots where A_i depends only on the outcome of E_i — A_1, A_2, \ldots are independent.

Example 2 (Coin tossing). Suppose 5 fair coins are tossed independently [or what is mathematically equivalent, one coin is tossed 5 times indepen- μ what is mathematically equivalent, one coin is tossed 5 times independent dently]. Then, the probability of tossing 5 heads is (1/2)³, and this is also the probability of tossing 5 tails, the probability of *HHHHT*, etc.

Example 3 (The geometric distribution). We toss a coin independently, until the first *H* appears. What is the probability that we need *N* tosses until we stop? Let H_i and T_i respectively denote the events that the *j*th toss yields heads [in the first case] and tails [in the second case]. Then, the probability that we seek is

$$
P(T_1 \cap \cdots \cap T_{N-1} \cap H_N) = P(T_1)P(T_2) \cdots P(T_{N-1})P(H_N) = \left(\frac{1}{2}\right)^N.
$$

This probability vanishes geometrically fast as $N \to \infty$. More generally still, if the coin were bent so that P (heads per toss) = p, then

$$
P(T_1 \cap \cdots \cap T_{N_1} \cap H_N) = (1-p)^{N-1}p.
$$

Example 4 (The gambler's rule). A game is played successively independently until the chances are better than 50% that we have won the game at least once. If the chances of winning are *p* per play, then

 P (win at least once in *n* plays) = 1 *−* P (lose *n* times in a row)

$$
= 1 - (1 - p)^n.
$$

Thus, we want to choose *n* so that $1-(1-p)^n \geq 1/2$. Equivalently, $(1-p)^n \leq$ 1/2 which is itself equivalent to $n \ln(1-p) \leq -\ln 2$. In other words, we have to play at least $n(p)$ times, where

$$
n(p) := \frac{\ln 2}{\ln \left(\frac{1}{1-p}\right)} \approx \frac{0.693147180559945}{\ln \left(\frac{1}{1-p}\right)}.
$$

If *p*—the odds of winning per play—is very small, then the preceding has an interesting interpretation. Taylor's theorem tells us that for $p \approx 0$,

$$
\ln\left(\frac{1}{1-p}\right)\approx p.
$$

(Check!) Therefore, $n(p) \approx 0.69315/p$.

Gambler's ruin formula

You, the "Gambler," are playing independent repetitions of a fair game against the "House." When you win, you gain a dollar; when you lose, you lose a dollar. You start with *k* dollars, and the House starts with *K* dollars. What is the probability that the House is ruined before you?

Define P_i to be the conditional probability that when the game ends you have $K + j$ dollars, given that you start with *j* dollars initially. We want to find P_k .

Two easy cases are: $P_0 = 0$ and $P_{k+K} = 1$.

By Theorem 1 and independence,

$$
P_j = \frac{1}{2}P_{j+1} + \frac{1}{2}P_{j-1} \qquad \text{for } 0 < j < k + K.
$$

In order to solve this, write $P_j = \frac{1}{2}P_j + \frac{1}{2}P_j$, so that

$$
\frac{1}{2}p_j + \frac{1}{2}p_j = \frac{1}{2}p_{j+1} + \frac{1}{2}p_{j-1} \quad \text{for } 0 < j < k + K.
$$

Multiply both side by two and solve:

$$
P_{j+1} - P_j = P_j - P_{j-1} \qquad \text{for } 0 < j < k + K.
$$

In other words,

$$
P_{j+1} - P_j = P_1 \qquad \text{for } 0 < j < k + K.
$$

This is the simplest of all possible "difference equations." In order to solve it you note that, since $P_0 = 0$,

$$
P_{j+1} = (P_{j+1} - P_j) + (P_j - P_{j-1}) + \dots + (P_1 - P_0) \quad \text{for } 0 < j < k + K
$$
\n
$$
= (j+1)P_1 \quad \text{for } 0 < j < k + K.
$$

Apply this with $j = k + K - 1$ to find that

$$
1 = P_{k+K} = (k+K)P_1
$$
, and hence $P_1 = \frac{1}{k+K}$.

Therefore,

$$
P_{j+1} = \frac{j+1}{k+K} \qquad \text{for } 0 < j < k+K.
$$

Set $j = k - 1$ to find the following:

Theorem 1 (Gambler's ruin formula). *If you start with k dollars, then the probability that you end with k*+*K dollars before losing all of your initial fortune is* $k/(k + K)$ *for all* $1 \leq k \leq K$ *.*

Conditional probabilities as probabilities

Suppose *B* is an event of positive probability. Consider the conditional probability distribution, $Q(\cdots) = P(\cdots | B)$.

Theorem 2. Q *is a probability on the new sample space B. [It is also a probability on the larger sample space* Ω*, why?]*

Proof. Rule 1 is easy to verify: For all events *A*,

$$
0 \leq Q(A) = \frac{P(A \cap B)}{P(B)} \leq \frac{P(B)}{P(B)} = 1,
$$

because *A* ∩ *B* \subseteq *B* and hence $P(A ∩ B) \leq P(B)$.

For Rule 2 we check that

$$
Q(B) = P(B | B) = \frac{P(B \cap B)}{P(B)} = 1.
$$

Next suppose *A*1*,A*2*, . . .* are disjoint events. Then,

$$
Q\left(\bigcup_{n=1}^{\infty} A_n\right) = \frac{1}{P(B)} P\left(\bigcup_{n=1}^{\infty} A_n \cap B\right).
$$

Note that $\bigcup_{n=1}^{\infty} A_n \cap B = \bigcup_{n=1}^{\infty} (A_n \cap B)$, and $(A_1 \cap B)$, $(A_2 \cap B)$, ... are disjoint events. Therefore,

$$
Q\left(\bigcup_{n=1}^{\infty} A_n\right) = \frac{1}{P(B)} \sum_{N=1}^{\infty} P(A_n \cap B) = \sum_{n=1}^{\infty} Q(A_n).
$$

This verifies Rule 4, and hence Rule 3. \Box

