
Independence
• Events A and B are said to be independent if

P(A ∩ B) = P(A)P(B).
Divide both sides by P(B), if it is positive, to find that A and B are indepen-
dent if and only if

P(A | B) = P(A).
”Knowledge of B tells us nothing new about A.”

Two experiments are independent if A1 and A2 are independent for
all outcomes Aj of experiment j .
Example 1. Toss two fair coins; all possible outcomes are equally likely.
Let Hj denote the event that the jth coin landed on heads, and Tj = Hcj .
Then,

P(H1 ∩ H2) = 1
4 = P(H1)P(H2).

In fact, the two coins are independent because P(T1 ∩ T2) = P(T1 ∩ H2) =
P(H1 ∩ H2) = 1/4 also. Conversely, if two fair coins are tossed indepen-
dently, then all possible outcomes are equally likely to occur. What if the
coins are not fair, say P(H1) = P(H2) = 1/4?

• Three events A1, A2, A3 are independent if any two of them are,
and P(A1 ∩ A2 ∩ A3) = P(A1)P(A2)P(A3). Events A1, A2, A3, A4 are
independent if any three of are, and P(A1 ∩ A2 ∩ A3 ∩ A4) =
P(A1)P(A2)P(A3)P(A4). And in general, once we have defined the
independence of n − 1 events, we define n events A1, . . . , An to be
independent if any n−1 of them are independent, and P(∩nj=1Aj ) =∏n

j=1 P(Aj ).
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• A1, A2, · · · are independent if all finite subcollection of the Aj ’s
are independent. This condition turns out to be equivalent to the
following: A1, . . . , An are independent for all n ≥ 2.

• Experiments E1, E2, . . . are independent if for all events A1, A2, . . .—
where Aj depends only on the outcome of Ej—A1, A2, . . . are in-
dependent.

Example 2 (Coin tossing). Suppose 5 fair coins are tossed independently
[or what is mathematically equivalent, one coin is tossed 5 times indepen-
dently]. Then, the probability of tossing 5 heads is (1/2)5, and this is also
the probability of tossing 5 tails, the probability of HHHHT , etc.
Example 3 (The geometric distribution). We toss a coin independently,
until the first H appears. What is the probability that we need N tosses
until we stop? Let Hj and Tj respectively denote the events that the jth
toss yields heads [in the first case] and tails [in the second case]. Then, the
probability that we seek is

P(T1 ∩ · · · ∩ TN−1 ∩ HN ) = P(T1)P(T2) · · · P(TN−1)P(HN ) =
(1

2
)N

.
This probability vanishes geometrically fast as N → ∞. More generally
still, if the coin were bent so that P(heads per toss) = p, then

P(T1 ∩ · · · ∩ TN1 ∩ HN ) = (1 − p)N−1p.

Example 4 (The gambler’s rule). A game is played successively indepen-
dently until the chances are better than 50% that we have won the game
at least once. If the chances of winning are p per play, then

P (win at least once in n plays) = 1 − P (lose n times in a row)
= 1 − (1 − p)n.

Thus, we want to choose n so that 1−(1−p)n ≥ 1/2. Equivalently, (1−p)n ≤
1/2 which is itself equivalent to n ln(1 − p) ≤ − ln 2. In other words, we
have to play at least n(p) times, where

n(p) := ln 2
ln

( 1
1−p

) ≈ 0.693147180559945
ln

( 1
1−p

) .

If p—the odds of winning per play—is very small, then the preceding has
an interesting interpretation. Taylor’s theorem tells us that for p ≈ 0,

ln
( 1

1 − p
)

≈ p.
(Check!) Therefore, n(p) ≈ 0.69315/p.
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Gambler’s ruin formula
You, the “Gambler,” are playing independent repetitions of a fair game
against the “House.” When you win, you gain a dollar; when you lose, you
lose a dollar. You start with k dollars, and the House starts with K dollars.
What is the probability that the House is ruined before you?

Define Pj to be the conditional probability that when the game ends
you have K + j dollars, given that you start with j dollars initially. We want
to find Pk .

Two easy cases are: P0 = 0 and Pk+K = 1.
By Theorem 1 and independence,

Pj = 1
2Pj+1 + 1

2Pj−1 for 0 < j < k + K.
In order to solve this, write Pj = 1

2Pj + 1
2Pj , so that

1
2Pj + 1

2Pj = 1
2Pj+1 + 1

2Pj−1 for 0 < j < k + K.
Multiply both side by two and solve:

Pj+1 − Pj = Pj − Pj−1 for 0 < j < k + K.
In other words,

Pj+1 − Pj = P1 for 0 < j < k + K.
This is the simplest of all possible “difference equations.” In order to solve
it you note that, since P0 = 0,

Pj+1 = (Pj+1 − Pj ) + (Pj − Pj−1) + · · · + (P1 − P0) for 0 < j < k + K
= (j + 1)P1 for 0 < j < k + K.

Apply this with j = k + K − 1 to find that
1 = Pk+K = (k + K)P1, and hence P1 = 1

k + K .
Therefore,

Pj+1 = j + 1
k + K for 0 < j < k + K.

Set j = k − 1 to find the following:
Theorem 1 (Gambler’s ruin formula). If you start with k dollars, then the
probability that you end with k+K dollars before losing all of your initial
fortune is k/(k + K) for all 1 ≤ k ≤ K.
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Conditional probabilities as probabilities
Suppose B is an event of positive probability. Consider the conditional
probability distribution, Q( · · · ) = P( · · · | B).
Theorem 2. Q is a probability on the new sample space B. [It is also a
probability on the larger sample space Ω, why?]

Proof. Rule 1 is easy to verify: For all events A,
0 ≤ Q(A) = P(A ∩ B)

P(B) ≤ P(B)
P(B) = 1,

because A ∩ B ⊆ B and hence P(A ∩ B) ≤ P(B).
For Rule 2 we check that

Q(B) = P(B | B) = P(B ∩ B)
P(B) = 1.

Next suppose A1, A2, . . . are disjoint events. Then,

Q
( ∞⋃

n=1
An

)
= 1

P(B) P
( ∞⋃

n=1
An ∩ B

)
.

Note that ∪∞n=1An ∩ B = ∪∞n=1(An ∩ B), and (A1 ∩ B), (A2 ∩ B), . . . are disjoint
events. Therefore,

Q
( ∞⋃

n=1
An

)
= 1

P(B)
∞∑

N=1
P (An ∩ B) =

∞∑
n=1

Q(An).

This verifies Rule 4, and hence Rule 3. !


