Lecture 4

Independence

• Events A and B are said to be independent if

$$P(A \cap B) = P(A)P(B).$$

Divide both sides by P(B), if it is positive, to find that A and B are independent if and only if

$$\mathbf{P}(A \mid B) = \mathbf{P}(A).$$

"Knowledge of B tells us nothing new about A."

Two experiments are *independent* if A_1 and A_2 are independent for all outcomes A_j of experiment *j*.

Example 1. Toss two fair coins; all possible outcomes are equally likely. Let H_j denote the event that the *j*th coin landed on heads, and $T_j = H_j^c$. Then,

$$P(H_1 \cap H_2) = \frac{1}{4} = P(H_1)P(H_2).$$

In fact, the two coins are independent because $P(T_1 \cap T_2) = P(T_1 \cap H_2) = P(H_1 \cap H_2) = 1/4$ also. Conversely, if two fair coins are tossed independently, then all possible outcomes are equally likely to occur. What if the coins are not fair, say $P(H_1) = P(H_2) = 1/4$?

Three events A₁, A₂, A₃ are *independent* if any two of them are, and P(A₁ ∩ A₂ ∩ A₃) = P(A₁)P(A₂)P(A₃). Events A₁, A₂, A₃, A₄ are independent if any three of are, and P(A₁ ∩ A₂ ∩ A₃ ∩ A₄) = P(A₁)P(A₂)P(A₃)P(A₄). And in general, once we have defined the independence of n − 1 events, we define n events A₁,..., A_n to be *independent* if any n−1 of them are independent, and P(∩ⁿ_{j=1}A_j) = ∏ⁿ_{j=1} P(A_j).

- A_1, A_2, \cdots are *independent* if all finite subcollection of the A_j 's are independent. This condition turns out to be equivalent to the following: A_1, \ldots, A_n are independent for all $n \ge 2$.
- Experiments E_1, E_2, \ldots are independent if for all events A_1, A_2, \ldots where A_j depends only on the outcome of E_j — A_1, A_2, \ldots are independent.

Example 2 (Coin tossing). Suppose 5 fair coins are tossed independently [or what is mathematically equivalent, one coin is tossed 5 times independently]. Then, the probability of tossing 5 heads is $(1/2)^5$, and this is also the probability of tossing 5 tails, the probability of *HHHHT*, etc.

Example 3 (The geometric distribution). We toss a coin independently, until the first H appears. What is the probability that we need N tosses until we stop? Let H_j and T_j respectively denote the events that the *j*th toss yields heads [in the first case] and tails [in the second case]. Then, the probability that we seek is

$$\mathbf{P}(T_1 \cap \cdots \cap T_{N-1} \cap H_N) = \mathbf{P}(T_1)\mathbf{P}(T_2)\cdots\mathbf{P}(T_{N-1})\mathbf{P}(H_N) = \left(\frac{1}{2}\right)^N$$

This probability vanishes geometrically fast as $N \to \infty$. More generally still, if the coin were bent so that P(heads per toss) = *p*, then

$$P(T_1 \cap \cdots \cap T_{N_1} \cap H_N) = (1-p)^{N-1}p$$

Example 4 (The gambler's rule). A game is played successively independently until the chances are better than 50% that we have won the game at least once. If the chances of winning are p per play, then

P(win at least once in n plays) = 1 - P(lose n times in a row)

$$= 1 - (1 - p)^n$$
.

Thus, we want to choose *n* so that $1-(1-p)^n \ge 1/2$. Equivalently, $(1-p)^n \le 1/2$ which is itself equivalent to $n \ln(1-p) \le -\ln 2$. In other words, we have to play at least n(p) times, where

$$n(p) := \frac{\ln 2}{\ln \left(\frac{1}{1-p}\right)} \approx \frac{0.693147180559945}{\ln \left(\frac{1}{1-p}\right)}.$$

If *p*—the odds of winning per play—is very small, then the preceding has an interesting interpretation. Taylor's theorem tells us that for $p \approx 0$,

$$\ln\left(\frac{1}{1-p}\right)\approx p.$$

(Check!) Therefore, $n(p) \approx 0.69315/p$.

Gambler's ruin formula

You, the "Gambler," are playing independent repetitions of a fair game against the "House." When you win, you gain a dollar; when you lose, you lose a dollar. You start with k dollars, and the House starts with K dollars. What is the probability that the House is ruined before you?

Define P_j to be the conditional probability that when the game ends you have K + j dollars, given that you start with j dollars initially. We want to find P_k .

Two easy cases are: $P_0 = 0$ and $P_{k+K} = 1$.

By Theorem 1 and independence,

$$P_j = \frac{1}{2}P_{j+1} + \frac{1}{2}P_{j-1}$$
 for $0 < j < k + K$.

In order to solve this, write $P_j = \frac{1}{2}P_j + \frac{1}{2}P_j$, so that

$$\frac{1}{2}P_j + \frac{1}{2}P_j = \frac{1}{2}P_{j+1} + \frac{1}{2}P_{j-1} \quad \text{for } 0 < j < k + K.$$

Multiply both side by two and solve:

$$P_{j+1} - P_j = P_j - P_{j-1}$$
 for $0 < j < k + K$.

In other words,

$$P_{j+1} - P_j = P_1$$
 for $0 < j < k + K$.

This is the simplest of all possible "difference equations." In order to solve it you note that, since $P_0 = 0$,

$$P_{j+1} = (P_{j+1} - P_j) + (P_j - P_{j-1}) + \dots + (P_1 - P_0) \quad \text{for } 0 < j < k + K$$

= $(j+1)P_1$ for $0 < j < k + K$.

Apply this with j = k + K - 1 to find that

$$1 = P_{k+K} = (k+K)P_1$$
, and hence $P_1 = \frac{1}{k+K}$.

Therefore,

$$P_{j+1} = \frac{j+1}{k+K}$$
 for $0 < j < k+K$.

Set j = k - 1 to find the following:

Theorem 1 (Gambler's ruin formula). If you start with k dollars, then the probability that you end with k + K dollars before losing all of your initial fortune is k/(k + K) for all $1 \le k \le K$.

Conditional probabilities as probabilities

Suppose *B* is an event of positive probability. Consider the conditional probability distribution, $Q(\dots) = P(\dots | B)$.

Theorem 2. Q is a probability on the new sample space B. [It is also a probability on the larger sample space Ω , why?]

Proof. Rule 1 is easy to verify: For all events *A*,

$$0 \le Q(A) = rac{P(A \cap B)}{P(B)} \le rac{P(B)}{P(B)} = 1,$$

because $A \cap B \subseteq B$ and hence $P(A \cap B) \leq P(B)$.

For Rule 2 we check that

$$Q(B) = P(B | B) = \frac{P(B \cap B)}{P(B)} = 1.$$

Next suppose A_1, A_2, \ldots are disjoint events. Then,

$$Q\left(\bigcup_{n=1}^{\infty}A_n\right) = \frac{1}{P(B)}P\left(\bigcup_{n=1}^{\infty}A_n\cap B\right).$$

Note that $\bigcup_{n=1}^{\infty} A_n \cap B = \bigcup_{n=1}^{\infty} (A_n \cap B)$, and $(A_1 \cap B)$, $(A_2 \cap B)$, ... are disjoint events. Therefore,

$$Q\left(\bigcup_{n=1}^{\infty} A_n\right) = \frac{1}{P(B)} \sum_{N=1}^{\infty} P\left(A_n \cap B\right) = \sum_{n=1}^{\infty} Q(A_n).$$

This verifies Rule 4, and hence Rule 3.

			I
J	_	_	