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Independence

e Events A and B are said to be independent if

P(A N B) = P(A)P(B).

Divide both sides by P(B), if it is positive, to find that A and B are indepen-
dent if and only if

P(A|B) = P(A).
"Knowledge of B tells us nothing new about A.”

Two experiments are independent if Ay and Ay are independent for
all outcomes A; of experiment j.

Example 1. Toss two fair coins; all possible outcomes are equally likely.
Let H; denote the event that the jth coin landed on heads, and T; = H;.
Then,

D{H, 1 Hy) = = PHI ().

In fact, the two coins are independent because P(Ty N Ty) = P(Ty N Hy) =
P(Hy N Hy) = 1/4 also. Conversely, if two fair coins are tossed indepen-
dently, then all possible outcomes are equally likely to occur. What if the
coins are not fair, say P(Hy) = P(Hyp) = 1/4?

e Three events A4, Ay, Az are independent if any two of them are,
and P(A; N Ay N Az) = P(A1)P(Ag)P(A3). Events Ay, Ay, Az, A, are
independent if any three of are, and P(A; N Ay N Az N A;) =
P(A1)P(A9)P(A3)P(A;). And in general, once we have defined the

independence of n — 1 events, we define n events Ay, ..., A, to be
independent if any n —1 of them are independent, and P(ﬂ;LiA]-) =
ﬂ?=1 P(4;).
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e Ay, Ay,--- are independent if all finite subcollection of the Aj’s
are independent. This condition turns out to be equivalent to the
following: A4, ..., A, are independent for all n > 2.

e Experiments Ey, Eo, . .. are independent if for all events Ay, Ao, .. .—
where A; depends only on the outcome of E;—Aq, Ag, ... are in-
dependent.

Example 2 (Coin tossing). Suppose 5 fair coins are tossed independently
[or what is mathematically equivalent, one coin is tossed 5 times indepen-
dently]. Then, the probability of tossing 5 heads is (1/2)°, and this is also
the probability of tossing 5 tails, the probability of HHHHT, etc.

Example 3 (The geometric distribution). We toss a coin independently,
until the first H appears. What is the probability that we need N tosses
until we stop? Let H; and T; respectively denote the events that the jth
toss yields heads [in the first case] and tails [in the second case]. Then, the
probability that we seek is

1 N
P(Ty 1+~ Ty_1 0 Hy) = P(Ty)P(Ty) - P(Ty 1) P(Hy) = <2> |

This probability vanishes geometrically fast as N — co. More generally
still, if the coin were bent so that P(heads per toss) = p, then

P(Tyn---N Ty, NHy) =01 -p)N~'p.

Example 4 (The gambler’s rule). A game is played successively indepen-
dently until the chances are better than 50% that we have won the game
at least once. If the chances of winning are p per play, then

P (win at least once in n plays) = 1 — P (lose n times in a row)
=1-(1-p"
Thus, we want to choose n so that 1 — (1 —p)™ > 1/2. Equivalently, (1 —p)" <
1/2 which is itself equivalent to nIn(1 — p) < —In2. In other words, we
have to play at least n(p) times, where
In2  0.693147180559945

(p) :=
B () In ()

If p—the odds of winning per play—is very small, then the preceding has
an interesting interpretation. Taylor’'s theorem tells us that for p = 0,

m(-—t )
1-p =D

(Check!) Therefore, n(p) =~ 0.69315/p.
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Gambler’s ruin formula

You, the “Gambler,” are playing independent repetitions of a fair game
against the “House.” When you win, you gain a dollar; when you lose, you
lose a dollar. You start with k dollars, and the House starts with K dollars.
What is the probability that the House is ruined before you?

Define P; to be the conditional probability that when the game ends
you have K + j dollars, given that you start with j dollars initially. We want
to find Py.

Two easy cases are: Py = 0 and Pp . = 1.
By Theorem 1 and independence,

1 1
Pj = §Pj+1 + §Pj71 for 0 < ] <k+K.

In order to solve this, write P; = %Pj + %Pj, so that

1 1 1 1

Multiply both side by two and solve:
Piyy —P;=D; - Pj_4 for 0 <j<k+K.
In other words,
Pi,y - P =Dy forO<j<k+K.

This is the simplest of all possible “difference equations.” In order to solve
it you note that, since Py = 0,

pj+1=(p]‘+1—P]')+(P]‘—P]'_1)+-"+(P1—P()) fOl”O<j<k+K
=(j+1)Py  for0<j<k+K.

Apply this with j = k + K — 1 to find that

1
1=D = (kb + K)Dy, dh by = )
vk = (B + K)Py, and hence Py P
Therefore,
. Hj+1 .

Set j = k — 1 to find the following:

Theorem 1 (Gambler’s ruin formula). If you start with k dollars, then the
probability that you end with k+ K dollars before losing all of your initial
fortune is k/(k + K) for all 1 < k < K.
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Conditional probabilities as probabilities

Suppose B is an event of positive probability. Consider the conditional
probability distribution, Q(---) = P(--- | B).

Theorem 2. Q is a probability on the new sample space B. [It is also a
probability on the larger sample space 2, why?]

Proof. Rule 1 is easy to verify: For all events A,

P(ANB) _ P(B)
0<0(4) = DB < DB

because A N B C B and hence P(A N B) < P(B).
For Rule 2 we check that

Q(B) = P(B|B) =

=1,

P(BN B)
P(B)

Next suppose Ay, Ag, ... are disjoint events. Then,

Q<UAH> =I_)(18)19<UAnt>.
n=1 n=1

Note that U? A, NB = Uy (AN B), and (A1 N B), (A9N B), ... are disjoint

n=1
events. Therefore,

=1.

0 <U An> - 57 2P AN Bl = Y0l
n=1 N=1 n=1

This verifies Rule 4, and hence Rule 3. O



