
Conditional Probabilities
Example 1. There are 5 women and 10 men in a room. Three of the
women and 9 of the men are employed. You select a person at random
from the room, all people being equally likely to be chosen. Clearly, Ω is
the collection of all 15 people, and

P{male} = 2
3 , P{female} = 1

3 , P{employed} = 4
5 .

Also,
P{male and employed} = 8

15 , P{female and employed} = 4
15 .

Someone has looked at the result of the sample, and tells us that the per-
son sampled is employed. Let P(female | employed) denote the conditional
probability of “female” given this piece of information. Then,

P(female | employed) = |female among employed|
|employed| = 3

12 = 1
4 .

Definition 1. If A and B are events and P(B) > 0, then the conditional
probability of A given B is

P(A | B) = P(A ∩ B)
P(B) .

For the previous example, this amounts to writing

P(Female | employed) = |female and employed|/|Ω|
|employed|/|Ω| = 1

4 .

9
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Example 2 (Multiplication rule). A useful formulation of the conditional
probability formula: P(A ∩ B) = P(B)P(A | B). And an induction argument
can be used that shows that for all events A1, . . . , An ,
P(A1 ∩ · · · ∩ An) = P(A1)P(A2 | A1)P(A3 | A1 ∩ A2) · · · P(An | A1 ∩ · · · ∩ An−1).
Example 3. If we deal two cards fairly from a standard deck, the proba-
bility of K1 ∩ K2 [Kj = {King on the j draw}] is

P(K1 ∩ K2) = P(K1)P(K2 | K1) = 4
52 × 3

51 .
This agrees with direct counting: |K1 ∩ K2| = 4 × 3, whereas |Ω| = 52 × 51.

Similarly,
P(K1 ∩ K2 ∩ K3) = 4

52 × 3
51 × 2

50 .
Or for that matter,

P(K1 ∩ K2 ∩ K3 ∩ K4) = 4
52 × 3

51 × 2
50 × 1

49 .

Example 4 (Probability of a flush, p. 61 of Pitman). A five-card hand is
dealt at random from a deck of 52 cards. [More specifically, every time a
card is dealt, all remaining cards in the deck are equally likely.] What is
P(flush), where a flush occurs when all cards have the same suit? Because
probability of a disjoint union is the sum of the probabilities,
P(flush) = P(spade flush)+P(heart flush)+P(diamond flush)+P(club flush).
All four flush probabilities on the right-hand side are the same [think about
relabeling the cards]. Therefore,

P(flush) = 4P(diamond flush)
= 4 ×

(13
52 × 12

51 × 11
50 × 10

49 × 9
48

)

= 12
51 × 11

50 × 10
49 × 9

48
≈ 0.001980792316927.

Theorem 1 (Law of total probability). For all events A and B,
P(A) = P(A ∩ B) + P(A ∩ Bc).

If, in addition, 0 < P(B) < 1, then
P(A) = P(A | B)P(B) + P(A | Bc)P(Bc).

Proof. For the first statement, note that A = (A ∩ B) ∪ (A ∩ Bc) is a disjoint
union. For the second, write P(A ∩ B) = P(A | B)P(B) and P(A ∩ Bc) =
P(A | Bc)P(Bc). !
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Example 5 (The Monte Hall problem). Three doors: behind one is a nice
prize; behind the other two lie goats. You choose a door at random. The
host (Monte Hall) opens another door, and gives you the option of changing
your choice to the remaining unopened door. Should you take his offer?

The answer is “yes.” Indeed, if W denotes the event that you win, then
under the “not switch” model, we have

P(W ) = 1
3 . (4)

Under the “switch model,”
P(W ) = P(W | R)P(R) + P(W | Rc)P(Rc),

where R denotes the event that you had it right in your first guess. Now
P(R) = 1/3, but because you are going to switch, P(W | R) = 0 and P(W | Rc) =
1. Therefore,

P(W ) = 2
3 .

Compare this with (4) to see that you should always switch. What are
my assumptions on Ω? This is an important issue, as can be seen from
reading the nice discussion (p. 75) of the text.
Example 6. There are three types of people: poor (π), middle-income (µ),
and rich (ρ). 40% of all π , 45% of µ, and 60% of ρ are over 25 years old
(Θ). Find P(Θ). The result of Theorem 1 gets replaced with

P(Θ) = P(Θ ∩ π) + P(Θ ∩ µ) + P(Θ ∩ ρ)
= P(Θ | π)P(π) + P(Θ | µ)P(µ) + P(Θ | ρ)P(ρ)
= 0.4P(π) + 0.45P(µ) + 0.6P(ρ).

If we knew P(π) and P(µ), then we could solve. For example, suppose
P(π) = 0.1 and P(µ) = 0.3. Then P(ρ) = 0.6 (why?), and

P(Θ) = (0.4 × 0.1) + (0.45 × 0.3) + (0.6 × 0.6) = 0.535.

Bayes’s Theorem
The following question arises from time to time: Suppose A and B are two
events of positive probability. If we know P(B | A) then what is P(A | B)?
We can proceed as follows:

P(A | B) = P(A ∩ B)
P(B) = P(B | A)P(A)

P(B) .
If we know only the conditional probabilities, then we can write P(B), in
turn, using Theorem 1, and obtain
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Theorem 2 (Bayes’s Formula). If A, Ac and B are events of positive prob-
ability, then

P(A | B) = P(B | A)P(A)
P(B | A)P(A) + P(B | Ac)P(Ac) .

Example 7. There are two coins on a table. The first tosses heads with
probability 1/2, whereas the second tosses heads with probability 1/3. You
select one at random and toss it. What are the chances that you toss heads?

Question: What is Ω?
Question: Someone tells you that the end result of this game was heads.

What are the odds that it was the first coin that was chosen?
Let C denote the event that you selected the first coin. Let H denote

the event that you tossed heads. We know: P(C) = 1/2, P(H | C) = 1/2, and
P(H | Cc) = 1/3. By Bayes’s formula,

P(C | H) = P(H | C)P(C)
P(H | C)P(C) + P(H | Cc)P(Cc)

=
1
2 × 1

2(1
2 × 1

2
) + (1

3 × 1
2
)

= 3
5 .

Bayes’ rule has a natural generalization. Suppose A1, . . . , An and B are
events such that all of the Aj ’s are disjoint [Ai ∩ Aj = ∅ if i &= j] and at least
one of the Aj ’s necessarily occurs [A1 ∪ · · · ∪ An = Ω. For instance, A1 = A
and A2 = Ac with n = 2.]. Then,

P(Aj | B) = P(B | Aj )P(Aj )
P(B | A1)P(A1) + · · · + P(Bn | An)P(An) .

When n = 2 and A1 = A and A2 = Ac , then this is the former Bayes’s
theorem. The general formula follows from similar arguments as the
n = 2 case.


