
Consequences of the probability rules
Example 1 (Complement rule). Recall that Ac , the complement of A, is the
collection of all points in Ω that are not in A. Thus, A and Ac are disjoint.
Because Ω = A ∪ Ac is a disjoint union, Rules 2 and 3 together imply then
that

1 = P(Ω)
= P(A ∪ Ac)
= P(A) + P(Ac).

Thus, we obtain the physically–appealing statement that
P(A) = 1 − P(Ac).

For instance, this yields P(∅) = 1 − P(Ω) = 0. “Chances are zero that
nothing happens.”
Example 2. If A ⊆ B, then we can write B as a disjoint union: B =
A ∪ (B ∩ Ac). Therefore, P(B) = P(A) + P(B ∩ Ac); here E ∩ F denotes
the intersection of E and F [some people, including the author of your
textbook, prefer EF to E ∩ F ; the meaning is of course the same]. The
latter probability is ≥ 0 by Rule 1. Therefore, we reach another physically-
appealing property:

If A ∪ B, then P(A) ≤ P(B).

Example 3 (Difference rule). The event that “B happens but not A” is in
math notation B ∩ Ac . Note that B = (B ∩ A) ∪ (B ∩ Ac) is the union of
two disjoint sets. Therefore, P(B) = P(B ∩ A) + P(B ∩ Ac), which can be
rewritten as

P(B ∩ Ac) = P(B) − P(B ∩ A).
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If, in addition, A ⊆ B [in words, whenever A happens then so does B] then
B ∩ A = A, and we have P(B ∩ Ac) = P(B) − P(A). This is the “difference
rule” of your textbook.
Example 4. Suppose Ω = {ω1, . . . , ωN} has N distinct elements (“N distinct
outcomes of the experiment”). One way of assigning probabilities to every
subset of Ω is to just let

P(A) = |A|
|Ω| = |A|

N ,

where |E| denotes the number of elements of E . Let us check that this
probability assignment satisfies Rules 1–4. Rules 1 and 2 are easy to verify,
and Rule 4 holds vacuously because Ω does not have infinitely-many dis-
joint subsets. It remains to verify Rule 3. If A and B are disjoint subsets of
Ω, then |A ∪ B| = |A| + |B|. Rule 3 follows from this. In this example, each
outcome ωi has probability 1/N . Thus, these are “equally likely outcomes.”
Example 5. Let

Ω =
{

(H1 , H2) , (H1 , T2) , (T1 , H2) , (T1 , T2)
}

.
There are four possible outcomes. Suppose that they are equally likely.
Then, by Rule 3,

P({H1}) = P
(

{H1 , H2} ∪{ H1 , T2}
)

= P({H1 , H2}) + P({H1 , T2})
= 1

4 + 1
4

= 1
2 .

In fact, in this model for equally-likely outcomes, P({H1}) = P({H2}) =
P({T1}) = P({T2}) = 1/2. Thus, we are modeling two fair tosses of two fair
coins.
Example 6. Let us continue with the sample space of the previous ex-
ample, but assign probabilities differently. Here, we define P({H1 , H2}) =
P({T1 , T2}) = 1/2 and P({H1 , T2}) = P({T1 , H2}) = 1/2. We compute, as
we did before, to find that P({H1}) = P({H2}) = P({H3}) = P({H4}) = 1/2.
But now the coins are not tossed fairly. In fact, the results of the two coin
tosses are the same in this model.

The following generalizes Rule 3, because P(A ∩ B) = 0 when A and B
are disjoint.
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Lemma 1 (Inclusion-exclusion rule). If A and B are events (not necessar-
ily disjoint), then

P(A ∪ B) = P(A) + P(B) − P(A ∩ B).

Proof. We can write A ∪ B as a disjoint union of three events:
A ∪ B = (A ∩ Bc) ∪ (Ac ∩ B) ∪ (A ∩ B).

By Rule 3,
P(A ∪ B) = P(A ∩ Bc) + P(Ac ∩ B) + P(A ∩ B). (1)

Similarly, write A = (A ∩ Bc) ∪ (A ∩ B), as a disjoint union, to find that
P(A) = P(A ∩ Bc) + P(A ∩ B). (2)

There is a third identity that is proved the same way. Namely,
P(B) = P(Ac ∩ B) + P(A ∩ B). (3)

Add (2) and (3) and solve to find that
P(A ∩ Bc) + P(Ac ∩ B) = P(A) + P(B) − 2P(A ∩ B).

Plug this in to the right-hand side of (1) to finish the proof. !

Examples
Example 7 (Rich and famous, p. 23 of Pitman). In a certain population,
10% of the people are rich [R], 5% are famous [F ], and 3% are rich and
famous [R ∩ F ]. For a person picked at random from this population:

(1) What is the chance that the person is not rich [Rc]?
P(Rc) = 1 = P(R) = 1 − 0.1 = 0.9.

(2) What is the chance that the person is rich, but not famous [R∩Fc]?
P(R ∩ Fc) = P(R) − P(R ∩ F ) = 0.1 − 0.03 = 0.07.

(3) What is the chance that the person is either rich or famous [or
both]?

P(R ∪ F ) = P(R) + P(F ) − P(R ∩ F ) = 0.1 + 0.05 − 0.03 = 0.12.
Example 8. A fair die is cast. What is the chance that the number of dots
is 3 or greater? Let N denote the number of dots rolled. N is what is
called a “random variable.” Let Nj denote the event that N = j . Note that
N ≥ 3 corresponds to the event N3 ∪ N4 ∪ N5 ∪ N6. Because the Nj ’s are
disjoint [can’t happen at the same time],

P{N ≥ 3} = P(N3) + P(N4) + P(N5) + P(N6) = 4
6 = 2

3 .


