
Conditional distributions (discrete case)

The basic idea behind conditional distributions is simple: Suppose (X � Y ) is
a jointly-distributed random vector with a discrete joint distribution. Then
we can think of P{X = � | Y = �}, for every fixed � , as a distribution of
probabilities indexed by the variable �.

Example 1. Recall the following joint distribution from your text:

possible value for X
1 2 3

possible 3 1/6 1/6 0
values 2 1/6 0 1/6
for Y 1 0 1/6 1/6

Now suppose we know that Y = 3. Then, the conditional distribution
of X, given that we know Y = 3, is given by the following:

P{X = 1 | Y = 3} = P{X = 1 � Y = 3}
P{Y = 3} = 1/6

1/3 = 1
2 �

P{X = 2 | Y = 3} = 1
2 �

similarly, and P{X = � | Y = 3} = 0 for all other values of �. Note that, in
this example,

�
� P{X = � | Y = 3} = 1. Therefore, the “conditional distri-

bution” of X given that Y = 3 is indeed a total collection of probabilities.
As such, it has an expectation, variance, etc., as well. For instance,

E(X | Y = 3) =
�

�
P{X = � | Y = 3} =

�
1 × 1

2

�
+

�
2 × 1

2

�
= 3

2 �

That is, if Y = 3, then our best predictor of X is 3/2. Whereas, EX =
2, which means that our best predictor of X, in light of no additional
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information, is 2. You should check that also

E(X | Y = 1) = 5
2 � E(X | Y = 2) = 2�

Similarly,
E(X2 | Y = 3) =

�
12 × 1

2

�
+

�
22 × 1

2

�
= 3�

whence
Var(X | Y = 3) = 3 −

�
3
2

�2
= 3

4 �

You should compare this with the unconditional variance VarX = 8/3
(check the details!).

Fix a number � . In general, the conditional distribution of X given that
Y = � is given by the table [function of �]:

P{X = � | Y = �} = P{X = � � Y = �}
P{Y = �} = P{X = � � Y = �}�

� P{X = � � Y = �} �

It follows easily from this that: (i) P{X = � | Y = �} ≥ 0; and (ii)
�

� P{X =
� | Y = �} = 1. This shows that we really are studying a [here conditional]
probability distribution. As such,

E
�
�(X)

�� Y = �
�

=
�

�
�(�)P{X = � | Y = �}�

as long as the sum converges absolutely [or when �(�) ≥ 0 for all �].

Example 2. Choose and fix 0 < � < 1, and two integers �� � ≥ 1. Let X
and Y be independent random variables; we suppose that X has a binomial
distribution with parameters � and �; and Y has a binomial distribution
with parameters � and �. Because X + Y can be thought of as the total
number of successes in � + � tosses of independent �-coins, it follows
that X + Y has a binomial distribution with parameters � + � and �. Our
present goal is to find the conditional distribution of X, given that X+Y = �,
for a fixed integer 0 ≤ � ≤ � + �.

P{X = � | X + Y = �} = P{X = � � X + Y = �}
P{X + Y = �}

= P{X = �} · P{Y = � − �}
P{X + Y = �} �

The numerator is zero unless � = 0 � � � � � �. But if 0 ≤ � ≤ �, then

P{X = � | X + Y = �} =
��

�
�
����−� ·

� �
�−�

�
��−���−�+�

��+�
�

�
����+�−�

=
��

�
�

·
� �

�−�
�

��+�
�

� �
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That is, given that X + Y = �, then the conditional distribution of X is
a hypergeometric distribution! We can now read off the mean and the
variance from facts we know about hypergeometrics. Namely, according
to Example 1 on page 61 of these notes,

E(X | X + Y = �) = �
� + � × ��

and Example 2 on page 61 tells us that

Var(X | X + Y = �) = � �
� + �

�
� + �

� + � − �
� − 1 �

(Check the details! Some care is needed; on page 61, the notation was
slightly different than it is here: The variable B there is now �; N there is
now � + �, etc.)

Example 3. Suppose X1 and X2 are independent, distributed respectively
as Poisson(λ1) and Poisson(λ2), where λ1� λ2 > 0 are fixed constants. What
is the distribution of X1, given that X1 +X2 = � for a positive [fixed] integer
�?

We will need the distribution of X1 + X2. Therefore, let us begin with
that: The possible values of X1+X2 are 0� 1� � � � ; therefore the “convolution”
formula for discrete distributions implies that for all � ≥ 0,

P{X1 + X2 = �} =
�

�
P{X1 = �} · P{X2 = � − �}

=
∞�

�=0

λ�
1 �−λ1

�! · P{X2 = � − �}

=
��

�=0

λ�
1 �−λ1

�! · λ�−�
2 �−λ2

(� − �)! = �−(λ1+λ2)

�! ·
��

�=0

�
�
�

�
λ�

1 λ�−�
2

= �−(λ1+λ2)

�! · (λ1 + λ2)� [binomial theorem];

and P{X1 + X2 = �} = 0 for other values of �. In other words, X1 + X2 is
distributed as Poisson(λ1 + λ2).1

1
Aside: This and induction together prove that if X1� � � � � X� are independent and all distributed

respectively as Poisson(λ1), . . . , Poisson(λ�), then X1 + · · · + X� is distributed according to a Poisson
distribution with parameter λ1 + · · · + λ� .



86 17

Now,

P{X1 = � | X1 + X2 = �} = P{X1 = �} · P{X2 = � − �}
P{X1 + X2 = �}

=

λ�
1 �−λ1

�! · λ�−�
2 �−λ2

(� − �)!
(λ1 + λ2)��−(λ1+λ2)

�!

=
�

�
�

�
����−��

where
� := λ1

λ1 + λ2
� � := 1 − � = λ2

λ1 + λ2
�

That is, the conditional distribution of X1, given that X1 + X2 = �, is
Binomial(� � �).

Continuous conditional distributions

Once we understand conditional distributions in the discrete setting, we
could predict how the theory should work in the continuous setting [al-
though it is quite difficult to justify that what is about to be discussed is
legitimate].

Suppose (X � Y ) is jointly distributed with joint density � (� � �). Then we
define the conditional density of X given Y = � [assuming that �Y (�) �= 0]
as

�X|Y (�| �) := � (� � �)
�Y (�) for all −∞ < � < ∞�

This leads to conditional expectations:

E
�
�(X) | Y = �

�
=

� ∞

−∞
�(�)�X|Y (�| �) ���

etc. As such we have now E(X | Y = �), Var(X | Y = �), etc. in the usual way
using [now conditional] densities.

Example 4 (Uniform on a triangle, p. 414 of your text). Suppose (X � Y )
is chosen uniformly at random from the triangle {(� � �) : � ≥ 0� � ≥
0� � + � ≤ 2}. Find the conditional density of Y , given that X = � [for a
fixed 0 ≤ � ≤ 2].

We know that � (� � �) = 1
2 if (� � �) is in the triangle and � (� � �) = 0

otherwise. Therefore, for all fixed 0 ≤ � ≤ 2,

�X(�) =
� 2−�

0
� (� � �) �� = 2 − �

2 �
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and �X(�) = 0 for other values of �. This yields the following: For all
0 ≤ � ≤ 2 − �,

�Y |X(� | �) = � (� � �)
�X(�) = 1/2

(2 − �)/2 = 1
2 − � �

and �Y |X(� | �) = 0 for all other values of � . In other words, given that
X = �, the conditional distribution of Y is Uniform(0 � 2 − �). Thus, for
instance, P{Y > 1 | X = �} = 0 if 2 − � < 1 [i.e., � > 1] and P{Y > 1 | X =
�} = (1 − �)/(2 − �) for 0 ≤ � ≤ 1. Alternatively, we can work things out
the longer way by hand:

P{Y > 1 | X = �} =
� ∞

1
�Y |X(� | �) ���

Now the integrand is zero if � > 2 − �. Therefore, unless 0 ≤ � ≤ 1, the
preceding probability is zero. When 0 ≤ � ≤ 1, then we have

P{Y > 1 | X = �} =
� 2−�

1

1
2 − � �� = 1 − �

2 − � �

As another example within this one, let us compute E(Y | X = �):

E(Y | X = �) =
� ∞

−∞
��Y |X(� | �) ��

=
� 2−�

0

�
2 − � �� = 2 − �

2 �

[Alternatively, we can read this off from facts that we know about uni-
forms; for instance, we should be able to tell—without computation—that
Var(Y | X = �) = (2 − �)2/12. Check this by direct computation also!]


