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Conditional distributions (discrete case)

The basic idea behind conditional distributions is simple: Suppose (X, Y) is
a jointly-distributed random vector with a discrete joint distribution. Then
we can think of P{X = x|V = y}, for every fixed y, as a distribution of
probabilities indexed by the variable x.

Example 1. Recall the following joint distribution from your text:

possible value for X

1 2 3
511/6 1/6 0
211/6 0 1/6

11 0 1/6 1/6

Now suppose we know that Y = 3. Then, the conditional distribution
of X, given that we know Y = 3, is given by the following:
P{X=1,¥=3] 1/6 1

PIX =1V =3} == o= = e = 5

1
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similarly, and P{X = x| Y = 3} = 0 for all other values of x. Note that, in
this example, ) . P{X = x| Y = 3} = 1. Therefore, the “conditional distri-
bution” of X given that Y = 3 is indeed a total collection of probabilities.
As such, it has an expectation, variance, etc, as well. For instance,

E(X|Y=3)=ZP{X=JCIY=3}=<1x;>+<2x;>=2.

That is, if ¥ = 3, then our best predictor of X is 3/2. Whereas, EX =
2, which means that our best predictor of X, in light of no additional

P{X=2|V=3]=
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information, is 2. You should check that also

E(X|Y=1)=g, EX|Y=2) =2
Similarly,
1 1
21v _ 7 _ (12, = 2w ) =
E(X*|Y =3) <1 ><2>+<2 ><2> 3,
whence 9
Var(X|Y=3)=3—<2> =%

You should compare this with the unconditional variance VarX = 8/3
(check the details!).

Fix a number y. In general, the conditional distribution of X given that
YV = y is given by the table [function of x|:

PX=x,VY=y} P{X=x,V=y]

P{Y =y} Y, P{X=a,V=y}
It follows easily from this that: (i) P{X =x|Y =y} > 0;and (ii) } |, P{X =
x|Y =y} = 1. This shows that we really are studying a [here conditional]
probability distribution. As such,

ElgX)|V=y] =) g)P{X =x|V =y},

P{X=x|V=y}=

as long as the sum converges absolutely [or when g(x) > 0 for all x].

Example 2. Choose and fix 0 < p < 1, and two integers n,m > 1. Let X
and Y be independent random variables; we suppose that X has a binomial
distribution with parameters n and p; and Y has a binomial distribution
with parameters m and p. Because X + V can be thought of as the total
number of successes in n + m tosses of independent p-coins, it follows
that X + ¥ has a binomial distribution with parameters n + m and p. Our
present goal is to find the conditional distribution of X, given that X+ VY = s,
for a fixed integer 0 < s < n + m.

PIX=x,X+V-=
PIX —x|X+V—s} DX =T XtV =s)

P{X+V=s}
P{X=x}-P{Y=s—-x]}
- P{X+V=s) ‘
The numerator is zero unless x =0, ..., s. Butif 0 < x <'s, then

n pan—-I . Ifl ps—xqm—s+x
p{X = IIX + y = 5} = (I) (n+m>(55221+m_5

- (n)

(")
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That is, given that X + Y = s, then the conditional distribution of X is
a hypergeometric distribution! We can now read off the mean and the
variance from facts we know about hypergeometrics. Namely, according
to Example 1 on page 61 of these notes,

n

EX|X+Y=s) = ——

xS,

and Example 2 on page 61 tells us that

m n+m-—s
n+mn+m s-1

Var(X | X+ YV =5s) =5

(Check the details! Some care is needed; on page 61, the notation was
slightly different than it is here: The variable B there is now n; N there is
now n + m, etc.)

Example 3. Suppose X; and Xy are independent, distributed respectively
as Poisson(A4) and Poisson(Ag), where A, A9 > O are fixed constants. What
is the distribution of Xy, given that Xy + Xy = s for a positive [fixed] integer
s?

We will need the distribution of X4 + Xo. Therefore, let us begin with
that: The possible values of X1+ Xy are 0,1, ... ; therefore the “convolution”
formula for discrete distributions implies that for all a > 0,

P{X1+X2=a}=ZP{X1 —x}-P{Xg=a—-x)

D L T P
=0
_ Xa: e—M )La —X oA _ e~ (M+ig) .Xa: a ST
(@ —x)! al x )17
=0 x=0
e (}‘1+)\2)
TR (A + Ag)? [binomial theorem];

and P{X; + Xo = a} = 0 for other values of a. In other words, X; + X» is
distributed as Poisson(Aq + Ag).i

! Aside: This and induction together prove that if Xy, ..., Xpn are independent and all distributed
respectively as Poisson(A), ..., Poisson(Ay), then Xy + - -+ + X, is distributed according to a Poisson
distribution with parameter Ay + --- + An.
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Now,
P{Xy =x} -P{Xy=s—x}
p{X1 + XQ = S}
Me™M . A5 e
x! (s —x)!
(A + )Lg)sef(?»ﬁ)\z)
sl

_ <S> @r@s—r’
X

M Ao
P = , Q=1-& = .
M+ A M+ Ag
That is, the conditional distribution of X4, given that Xy + Xo = s, is

Binomial(s , &).

P{X1=IIX1+X2=S}=

where

Continuous conditional distributions

Once we understand conditional distributions in the discrete setting, we
could predict how the theory should work in the continuous setting [al-
though it is quite difficult to justify that what is about to be discussed is
legitimate].

Suppose (X, V) is jointly distributed with joint density f(x ,y). Then we
define the conditional density of X given Y = y [assuming that fy(y) + 0]

as
flx,y)

fy(y)

This leads to conditional expectations:

for all —oco < x < 0.

fxv(x|y) =

o

ElgX)|V =y] = / glx)fxylx|y)dx,

etc. As such we have now E(X |Y = y), Var(X | Y = y), etc. in the usual way
using [now conditional] densities.

Example 4 (Uniform on a triangle, p. 414 of your text). Suppose (X, V)
is chosen uniformly at random from the triangle {(x,y): x > 0,y >
0, x + y < 2}. Find the conditional density of V, given that X = x [for a
fixed 0 < x < 2].

We know that f(x,y) = % if (x,y) is in the triangle and f(x,y) = 0
otherwise. Therefore, for all fixed 0 < x < 2,

2—-x
5

2—x
fx(r)=/o flx,y)dy =
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and fx(x) = O for other values of x. This yields the following: For all
0<y<2-—nqx,
B flx,y) 12t
foxlylx) = fxlx)  ©@2-x)2 2-x’
and fyx(y|x) = 0 for all other values of y. In other words, given that

X = x, the conditional distribution of V is Uniform(0,2 — x). Thus, for
instance, P{Y > 1| X =x}=0if 2 —-x <1 [ie, x > 1] and P{Y >1|X =
x}=01—-x)/(2—-x)for 0 <x < 1. Alternatively, we can work things out
the longer way by hand:

P{Y>1|X=x}=/1 fyx|x)dy.

Now the integrand is zero if y > 2 — x. Therefore, unless 0 < x < 1, the
preceding probability is zero. When 0 < x < 1, then we have

2—x
1 1 —x
Vel|X—x)— _ .
pyv 1| x}]i Sy =

As another example within this one, let us compute E(Y | X = x):

E(Y|X =x) =/

(o.¢]

yiyix(y|x)dy

2—x
hY 2—-x
- dv = .
/O 9T g

[Alternatively, we can read this off from facts that we know about uni-
forms; for instance, we should be able to tell—without computation—that
Var(V | X = x) = (2 — x)?/12. Check this by direct computation also!]




