
Cumulative distribution functions

Given a random variable X, the cumulative distribution function—also
known as the cdf—F of X is the function defined by

F (�) = P{X ≤ �}�

If X has a continuous distribution with density function � , then

F (�) =
� �

−∞
� �

And by the fundamental theorem of calculus, we can compute � from F
as well; namely,

� (�) = F �(�)�

Example 1. Let X1� � � � � X� be independent exponentially-distributed ran-
dom variables with respective parameters λ1� � � � � λ� . What is the distribu-
tion of Y := min(X1� � � � � X�)?

Note that for all � > 0,

1 − FY (�) = P {X1 > � � � � � � X� > �} = P{X1 > �} · · · P{X� > �}
= �−λ1� · · · �−λ�� = �−θ��

where θ := λ1 + · · · + λ� . And FY (�) = 0 if � ≤ 0. Differentiate [�/��] to
see that �Y (�) = θ�−θ� if � > 0 and 0 if � ≤ 0. Thus, Y is exponentially
distributed with parameter θ := λ1 + · · · + λ� .

Change of variables
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Example 2. Suppose X has the exponential distribution with λ = 1; i.e.,
X has density function �X(�) = �−� for � > 0. Set Y :=

√
X. What is the

density function �Y of Y?
Clearly, �Y (�) = 0 if � < 0. Key observation: If FY is the cdf of Y , then

P{Y ≤ �} =
� �

0
�Y � �

��P{Y ≤ �} = �Y (�)�

thanks to the fundamental theorem of calculus. Now, densities are not
probabilities. Therefore, they do not follow the rules of probabilities. But
cdf’s are genuine probabilities. Now,

FY (�) = P{Y ≤ �} = P
�√

X ≤ �
�

= P
�

X ≤ �2
�

= 1 − �−�2 �

Therefore, if � > 0 then

�Y (�) = �
��

�
1 − �−�2

�
= 2��−�2 �

Proposition 1. Suppose X has density function �X on the range (� � �).
Let Y = �(X) where � is either strictly increasing or strictly decreasing
on (� � �). The range of Y is then the interval with endpoints �(�) and
�(�). And the density of Y is

�Y (�) =
�X

�
�−1(�)

�

|� �(�−1(�))| for � < � < ��

Proof. We follow the strategy of the preceding example. Suppose � is
strictly increasing. Then,

FY (�) = P
�

X ≤ �−1(�)
�

= FX
�

�−1(�)
�

for � < � < ��

Therefore,

�Y (�) = �X
�

�−1(�)
�

× �
��

�
�−1(�)

�
�

and the proposition follows from implicit differentiation: Set � = �(�)
[equivalently, � = �−1(�)] and note that

1 = � �(�)��
�� � ��

�� = 1
� �(�) = 1

� �(�−1(�)) �

Because ��/�� = �
�� �−1(�), it follows that

�Y (�) = �X
�

�−1(�)
�

× 1
� �(�−1(�)) =

�X
�
�−1(�)

�

|� �(�−1(�))| �
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since � is increasing, whence � �(α) = |� �(α)| for all α. The case that �
is strictly decreasing is similar, except the very first line is changed as
follows:
FY (�) = P{Y ≤ �} = P

�
X ≥ �−1(�)

�
= 1−FX

�
�−1(�)

�
for � < � < ��

The remainder is proved in parallel with the case that � is increasing. �

One can frequently find ��(X) when � is many-to-one as well; see pp.
306–307 of your text.

Continuous joint distributions

Two random variables X and Y , defined both on the same probability space,
are said to be jointly distributed with joint density � if

P{(X � Y ) ∈ A} =
��

A
� �

Here, the “joint density function” � is a function of two variables [� (� � �)].1

The defining properties of � are:

� (� � �) ≥ 0 for all �� � , and
� ∞

−∞

� ∞

−∞
� = 1�

The theory of several continuous random variables is very similar to
the analogous discrete theory. For instance, if �(� � �) is a function of two
variables, then

E�(X � Y ) =
� ∞

−∞

� ∞

−∞
�(� � �)� (� � �) �� ���

provided that either �(� � �) ≥ 0 or
��

|�(� � �)|� (� � �) �� �� < ∞.
As in the discrete theory, we can find the density of X and the density

of Y from the joint density � . For example, because

FX(�) = P{X ≤ �} = P{X ≤ � � Y < ∞} =
� �

−∞

� ∞

−∞
� (� � �) �� ���

it follows from the fundamental theorem of calculus that

�X(�) = F �
X(�) = �

��

� �

−∞

�� ∞

−∞
� (� � �) ��

�
�� =

� ∞

−∞
� (� � �) ���

And similarly,
�Y (�) =

� ∞

−∞
� (� � �) ���

Finally, X and Y are independent [i.e., P{X ∈ A � Y ∈ B} = P{X ∈ A}P{Y ∈
B}] if and only if � (� � �) = �X(�)�Y (�) for all pairs (� � �). As was the case for

1You should always plot the region of integration for double integrals!
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discrete random vectors, if X and Y are independent, then E[�1(X)�2(Y )] =
E[�1(X)] · E[�2(X)], whenever the expectations are defined, and absolutely
convergent [as integrals].

Example 3 (Uniform distribution on the square). Consider the random
vector (X � Y ) whose joint distribution is

� (� � �) =
�

1 if 0 ≤ �� � ≤ 1�
0 otherwise�

(1) What is P{X ≤ Y}? Write this as P{(X � Y ) ∈ A} and plot A to find
that

P{X ≤ Y} =
� 1

0

� �

0
�� �� =

� 1

0
� �� = 1

2 �

Similarly [draw a picture!],

P
�

X ≤ Y
2

�
=

� 1

0

� �/2

0
�� �� =

� 1

0

�
2 �� = 1

4 �

(2) What is the distribution of X? We compute the density:

�X(�) =
� 1

0
� (� � �) �� =

�
1 if 0 < � < 1�
0 otherwise�

Therefore, X is distributed uniformly on (0 � 1). And so is Y [check!].
(3) Are X and Y independent? Yes; indeed, � (� � �) = �X(�)�Y (�) for all

pairs (� � �).
(4) Find E(X), E(Y ), and E(

√
X/Y ).

E(X) =
� 1

0
��X(�) �� =

� 1

0
� �� = 1

2 = E(Y )�

And

E(
√

X/Y ) =
� 1

0

� 1

0

�
�
� �� �� =

� 1

0

1
√�

�� 1

0

√
� ��

�
���

The integral in the brackets is 2
3 . Therefore,

E(
√

X/Y ) = 2
3

� 1

0

1
√� �� = 4

3 �


