
The hypergeometric distribution

Suppose we have N balls; B of them are black and the remaining N − B
are white. We sample � balls at random without replacement (assuming
that � ≤ B). Let X denote the number of black balls drawn. What is
the distribution of X? If the sampling were done with replacement then
we know the answer is “Binomial(� � �),” where � = B/N . But sampling
without replacement changes that answer a little. Indeed, it is not hard to
check that
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This is called the hypergeometric distribution with parameters (N � B � �).

Example 1 (Mean of a hypergeometric). What is EX? One representation
is, of course, the following:
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Although this can be simplified directly, the direct method is arduous.
Instead we use the method of indicator variables: We can write X = IA1 +
· · · + IA� , where A� denotes the event that the �th draw is a black ball. The
addition rule for expectation tells us that

EX = P(A1) + · · · + P(A�) = �B
N �

Example 2 (SD of a hypergeometric). What is SDX? Again we use the
method of indicator variables; namely, we write X = IA1 + · · · + IA� , where
A� denotes the event that the �th draw is a black ball. But now note that the
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A� ’s are not independent. Therefore, we need to be more careful. First,
note that for every two random variables J1 and J2 that have finite second
moments,

E
�
(J1 + J2)2

�
= E(J2

1 ) + E(J2
2 ) + 2E(J1J2)�

This and induction together yield the following: For all random variables
J1� � � � � J� that have finite second moments,
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We apply this with J� := IA� to find that
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On one hand, P(A�) = B/N ; therefore
�

� P(A�) = �B/N . On the other
hand, if � < � then “by symmetry,”

P(A� ∩ A� ) = P(A1 ∩ A2) = P(A2 | A1)P(A1) = B − 1
N − 1

B
N = B(B − 1)
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Therefore,
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It follows that

E(X) = �B
N and Var(X) = �B

N + �(� − 1)B(B − 1)
N(N − 1) − �2B2

N2 �
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We simplify the variance further as follows: Let � := B/N denote the
proportion of black balls. Then,

Var(X) = �� + �� (� − 1)(B − 1)
N − 1 − �2�2
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with � := 1 − � = proportion of white balls. Therefore,

SD(X) = √��� ·
�

N − �
N − 1 �

If the sample size � � N , then (N − �)/(N − 1) ≈ 1. Therefore Var(X) ≈√���; i.e., there isn’t much difference between with and without replace-
ment sampling when the sample size � is much smaller than the population
size!

It turns out that there is also a central limit theorem [for X standard-
ized; that is, for all −∞ ≤ � ≤ � ≤ ∞ and B and � fixed,

P
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 ≈ Φ(�) − Φ(�) as N → ∞�


