
Standard deviation is a gauge of closeness to the mean
Suppose E(X2) < ∞. It is easy to see that if Var(X) = 0, then X is a constant.
Here is the proof:

0 = Var(X) = ∑
k

(k − EX)2P{X = k}.

Therefore, P{X = k} = 0 when k #= EX. Because the sum of all probabili-
ties of the form X = k is one [as k varies], it follows that P{X = EX} = 1.
Which is the statement that X is a constant, namely its expectation.

Based on the preceding, it stands to reason that if Var(X) is small,
equivalently when SD(X) is small, then X ≈ EX with high probability. The
following estimates that high probability:
Theorem 1 (Chebyshev’s inequality). For every random variable X such
that E(X2) < ∞, and for all λ > 0,

P {|X − EX| < λSD(X)} ≥ 1 − 1
λ2 .

Example 1. For instance, suppose SD(X) = 0.001 [very small!]. Then we
can apply Chebyshev’s inequality with λ := 100 to see that

P{|X − EX| < 0.1} ≥ 1 − 1
10000 .

Thus, X ≈ EX with high probability, as should be clear intuitively. Note
the remarkable property that we needed only to know something about
SD(X) in this example!

49
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Proof of Chebyshev’s inequality. We may notice that
Var(X) = ∑

k
(k − EX)2P{X = k}

≥ ∑
k: |k−EX|≥λSD(X)

(k − EX)2P{X = k}

≥ [λSD(X)]2 · ∑
k: |k−EX|≥λSD(X)

P{X = k}

= λ2Var(X) · P {|X − EX| ≥ λSD(X)} .
Therefore,

P {|X − EX| ≥ λSD(X)} ≤ 1
λ2 .

Subtract both sides from one to finish. !

Chebyshev’s inequality holds quite generally. Therefore, one would
expect it to be far from sharp [most of the time].
Example 2. Suppose X = ±1 with probability 1/2 each. Then it is easy to
check that

EX = µ = 0 and Var(X) = σ2 = 1, and therefore, SD(X) = 1.
According to Chebyshev’s inequality,

P{|X| < λ} ≥ 1 − 1
λ2 .

This is only useful for large values of λ. For instance if 0 < λ ≤ 1,
then 1 − (1/λ2) ≤ 0, so Chebyshev’s inequality—while correct—is useless
[it states that P{|X| < λ} ≥ a negative number!]. On the other hand,
if λ > 1, then P{|X| < λ} = 1; in fact, |X| = 1 in our example; whereas
Chebyshev’s inequality states only that the said probability is at least 1−λ−2.
For instance, if λ := 2, then P{|X| < 2} = 1, but the Chebyshev lower
bound is 1 − 2−2 = 3

4 .

Standardization
If X is a random variable with E(X2) < ∞, then we define its standardiza-
tion X∗ to be

X∗ := X − EX
SD(X) .

[This makes sense only when SD(X) > 0; i.e., when X is not a constant, but
a genuinely-random random variable].
Proposition 1. The random variable X∗ is unit free. Moreover, it is
always the case that E(X∗) = 0 and Var(X∗) = 1.
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The preceding is a simple fact: X∗ is unit free because if for example
X were measured in pounds, then so would be EX = ∑

k kP{X = k}; and
Var(X) = ∑

k(k − EX)2P{X = k} would be in pound-squares, therefore,
SD(X) would be in pounds. The fact that X∗ has mean zero is because
E(aX−b) = aEX−b; apply the latter with a = 1/SD(X) and b = EX/SD(X).
And it has standard deviation one because SD(aX − b) = |a|SD(X).

Notice that the Chebyshev inequality states that

P {|X∗| < λ} ≥ 1 − 1
λ2 for all λ > 0.

Law of averages (a.k.a. law of large numbers)
Let X1, . . . , Xn be independent random variables, all with common mean
µ = EX1 = · · · = EXn and common variance σ2 = Var(X1) = · · · = Var(Xn).
We make two uses of our newly-discovered addition rules: First,

E
(X1 + · · · + Xn

n
)

= 1
nE(X1) + · · · + 1

nE(Xn) = µ;

and second [because of independence],

Var
(X1 + · · · + Xn

n
)

= 1
n2 Var(X1 + · · · + Xn)

= 1
n2 {Var(X1) + · · · + Var(Xn)} = 1

n2 nσ2

= σ2
n .

That is,
SD

(X1 + · · · + Xn
n

)
= σ√n.

This and Chebyshev’s inequality together prove the following: For all λ >
0,

P
{∣∣∣∣

X1 + · · · + Xn
n − µ

∣∣∣∣ < λσ√n
}

≥ 1 − 1
λ2 .

Select λ := ε√n/σ for an arbitrarily small but positive ε to find that

P
{∣∣∣∣

X1 + · · · + Xn
n − µ

∣∣∣∣ < ε
}

≥ 1 − σ2
nε2 → 1 as n ↑ ∞.

We have proved the following in the special though important case where
the Xi ’s have finite common variances:
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Theorem 2 (Law of averages; Khintchine, 1932). Let X1, . . . , Xn be inde-
pendent with finite common mean µ. Then for all ε > 0 [however small],

limn→∞ P
{

µ − ε < X1 + · · · + Xn
n < µ + ε

}
= 1.

The law of large numbers holds even if the Xi ’s do not have a finite
variance. But we will not prove that refinement here.
Example 3. Consider the heart rates of a certain population; denote the
possible heart rates by r1, . . . , rm . Let X1, . . . , Xn be an independent [i.e.,
with replacement] sample from those populations. Then E(X1) = · · · =
E(Xn) = µ, where

µ = 1
m

m∑
i=1

ri = average population heart rate,

and you should verify that Var(X1) = · · · = Var(Xn) = σ2, where

σ2 := 1
m

m∑
i=1

r2i − µ2.

[Alternatively, consult Example 1, p. 187 of your text.] According to the law
of large numbers, if n is large then

P
{X1 + · · · + Xn

n ≈ µ
}

≈ 1.

Here is how statisticians use this: If you wish to discover the average
heart rate µ of a certain population, then you take a large independent
sample X1, . . . , Xn of heart rates. With high probability, the sample average
(X1 + · · ·+Xn)/n is close to the unknown population average µ. Therefore,
our estimate for µ is (X1 + · · · + Xn)/n; this is a good estimate with high
probability, thanks to the law of averages.

Statisticians use the sample average often enough that they give it a
special notation, viz.,

X̄n := X1 + · · · + Xn
n .

Thus, in particular, we know that
E(X̄n) = µ, SD(X̄n) = σ√n.

The latter is called a “square root law.”
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The central limit theorem
Theorem 3 (Central limit theorem; Kolmogorov, 1933). Let X1, . . . , Xn be
independent random variables with a common distribution. In particu-
lar, they have a common mean µ := E(X1) and variance σ2 := Var(X1).
Suppose σ < ∞ and define Sn := X1 + · · · + Xn . Then, for all −∞ ≤ a ≤
b ≤ ∞,

P
{

a ≤ Sn − nµ
σ√n ≤ b

}
≈ Φ(b) − Φ(a),

provided that n is large.
The preceding includes the central limit theorem for binomials. In-

deed, if X has a Binomial(n , p) distribution for a large n, then we can write
X = IA1 + · · · + IAn as a sum of n independent random variables, each with
a “Bernoulli(p) distribution.” The latter means that each IAj is one with
probability p and zero with probability q := 1 − p.

We will prove the central limit theorem much later in this course. But
for now let us note that ESn = nµ and SD(Sn) = σ√n. Therefore, the
central limit theorem is really saying that the standardization of Sn has
approximately a standard normal distribution when n is large.


