
Functions of random variables
Suppose X is a random variable and g a function. Then we can form a new
random variable Y := g(X). What is Eg(X)? In order to use the definition
of expectations we need to first compute the distribution of g(X), and that
can be time consuming. Then, we set

Eg(X) = ∑
x

xP{g(X) = x}.

The following theorem shows a simpler way out.
Theorem 1 (Law of the unconscious statistician). Provided that g(X) has
a well-defined expectation, we have

Eg(X) = ∑
w

g(w)P{X = w}.

Proof. We know that
Eg(X) = ∑

z
zP{g(X) = z} = ∑

z
z ∑

w : g(w)=z
P{X = w}

= ∑
w

∑
z: g(w)=z

zP{X = w},

after reordering the sums. The preceding quantity is clearly equal to∑
w

∑
z: g(w)=z g(w)P{X = w}. But for every w there is only one z such

that g(w) = z. Therefore, ∑
z: g(w)=z 1 = 1. The theorem follows. !

Example 1 (Moments). The kth moment of a random variable X is defined
as E(Xk), provided that the expectation is defined. Thanks to the law of
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the unconscious statistician,
E(Xk) = ∑

a
akP{X = a}.

For instance, suppose X denotes the number of dots rolled on a roll of a
fair die. Then,

E(Xk) =
(1

6 × 1
)

+
(1

6 × 2k
)

+ · · · +
(1

6 × 6k
)

.

Variance and standard deviation
When E(X2) and E(X) are defined, we can define the variance of a random
variable X as

Var(X) := E(X2) − (EX)2.

Proposition 1. It is always the case that
|EX| ≤

√
E(X2) (the Cauchy–Schwarz inequality).

In particular, EX is well defined and finite if E(X2) < ∞. Moreover, if
E(X2) < ∞, then

Var(X) = E
(

|X − EX|2
)

.

The latter proposition shows that Var(X) ≥ 0. Therefore, it makes
sense to consider its square root: The standard deviation of X is defined
as

SD(X) := √Var(X).

Example 2. Suppose X denotes the number of dots rolled on a roll of a
fair die. Then,

E(X2) = 12 + 22 + · · · + 62
6 = 91

6 , E(X) = 1 + · · · + 6
6 = 7

2 .
Therefore,

Var(X) = 91
6 −

(7
2

)2
= 91

6 − 49
4 = 35

12 .

And SD(X) = √35/12 ≈ 1.71.
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Expectation of functions of more than one variable
Similar ideas as before lead us to the following: If (X , Y ) is a random
vector then for every function g of two variables,

Eg(X , Y ) = ∑
(a,b)

g(a , b)P{X = a , Y = b},

provided that the sum is well defined.
Example 3 (Quick proof of the addition rule).

E(αX + βY ) = ∑
a,b

(αa + βb)P{X = a , Y = b}

= α ∑
(a,b)

P{X = a , Y = b} + β ∑
(a,b)

P{X = a , Y = b}.

Because ∑
b P{X = a , Y = b} = P{X = a} and ∑

a P{X = a , Y = b} =
P{Y = b} [marginals!], we find that E(αX+βY ) = αE(X)+βE(Y ), as before.

Example 4 (Expectation of a product). If (X , Y ) is a random vector, then
E(XY ) = ∑

(a,b)
abP{X = a , Y = b}.

If, in addition, X and Y are independent, then P{X = a , Y = b} = P{X =
a}P{Y = b}, therefore as long as the following expectations are all defined
and finite, then

E(XY ) = ∑
a

aP{X = a} ∑
b

bP{Y = b} = E(X)E(Y )!

And more generally [still assuming independence],
E[g(X)h(Y )] = E[g(X)]E[h(Y )],

provided that the expectations are all defined and finite.

Proposition 2. Suppose (X , Y ) is a random vector and E(X2) and E(Y2)
are finite. Then,

Var(X + Y ) = Var(X) + Var(Y ) + 2 {E(XY ) − EX · EY} .
In particular, if X1, . . . , Xn are independent, then

Var(X1 + · · · + Xn) = Var(X1) + · · · + Var(Xn).
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Proof. Because E(X2) and E(Y2), the Cauchy–Schwarz inequality tells us
that EX, EY , Var(X), and Var(Y ) are all defined and finite. Therefore,

Var(X + Y ) = E
[
(X + Y )2

]
− [E(X + Y )]2

=
[
E(X2) + E(Y2) + 2E(XY )

]
−

[
(EX)2 + (EY )2 + 2EX · EY

]
,

and this does the job since E(X2) − (EX)2 is the variance of X and E(Y2) −
(EY )2 is the variance of Y . When X and Y are independent, E(XY ) =
EX · EY , and the variance of X + Y simplifies to the sum of the individual
variances of X and Y . In particular, if X1 and X2 are independent then
Var(X1 + X2) = Var(X1) + Var(X2). And the remainder of the proposition
follows from this and induction [on n]. !

Example 5 (Variance of binomials). Let X have the binomial distribution
with parameters n and p. We have seen that we can write X as

X = IA1 + · · · + IAn ,
where the Aj ’s are independent events with P(Aj ) = p each. And this is
how we discovered the important identity,

E(X) = np.
Note that I2Aj = IAj [being a 0/1-valued object]. It follows that

Var(IAj ) = E
(

I2Aj

)
− (EIAj

)2 = E(IAj ) − p2 = p − p2 = p(1 − p) = pq.
Consequently,

Var(X) = npq and SD(X) = √npq.
Direct computations of these are possible, but involved. For instance, in
order to compute Var(X) directly we first can attempt to find E(X2). But
that means that we have to evaluate

E(X2) =
n∑

k=0
k2

(n
k

)
pkqn−k,

which can be done but is tedious. On the other hand, the converse is easy
[thanks to indicator functions]: E(X2) = Var(X) + (EX)2 = npq + n2p2.

Here is a final remark on standard deviations; it tells us how the stan-
dard deviation is changed under a linear change of variables:
Proposition 3. If α and β are constants, then

SD(αX + β) = |α|SD(X),
provided that E(X2) < ∞.



Expectation of functions of more than one variable 47

Proof. Because (αX + β)2 = α2X2 + β2 + 2αβX,
E

[
(αX + β)2

]
= α2E(X2) + β2 + 2αβE(X).

And [E(αX + β)]2 = α2(EX)2 + β2 − 2αβE(X).
Subtract the preceding 2 displays to find that

Var(αX + β) = α2Var(X).
The proposition follows upon applying a square root to both sides of the
latter identity. !


