Solutions to Homework 7

Math 5010-1, Summer 2010

July 12, 2010

p. 275–277, #3. We will need the antiderivative of $x(1-x)$ several times; therefore let us compute that first:

$$
\int x(1-x) dx = \int x dx - \int x^2 dx = \frac{x^2}{2} - \frac{x^3}{3}.
$$

(a) Need to choose c so that $\int_{-\infty}^{\infty} f = 1$. That is,

$$
1 = c \int_0^1 x(1-x) \, dx = c \left(\frac{x^2}{2} \Big|_0^1 - \frac{x^3}{3} \Big|_0^1 \right) = \frac{c}{6}.
$$

Therefore, $c = 6$.

(b) The answer is "one half, by symmetry." Alternatively,

$$
P\{X \le 1/2\} = \int_0^{1/2} 6x(1-x) dx = 6\left(\frac{x^2}{2}\Big|_0^{1/2} - \frac{x^3}{3}\Big|_0^{1/2}\right)
$$

= $\frac{1}{2}$.

(c) We compute

$$
P\{X \le 1/3\} = \int_0^{1/3} 6x(1-x) dx = 6\left(\frac{x^2}{2}\Big|_0^{1/3} - \frac{x^3}{3}\Big|_0^{1/3}\right)
$$

= $\frac{7}{27}$.

(d) We can compute directly by integration, or observe that

$$
P\{1/3 < X < 1/2\} = P\{X < 1/2\} - P\{X < 1/3\} = \frac{1}{2} - \frac{7}{27} = \frac{13}{27}.
$$

(e) As for the mean,

$$
EX = 6 \int_0^1 x^2 (1-x) \, dx = 6 \left(\int_0^1 x^2 \, dx - \int_0^1 x^3 \, dx \right) = \frac{1}{2}.
$$

Next we compute the second moment of X :

$$
E(X^{2}) = 6 \int_{0}^{1} x^{3} (1 - x) dx = 6 \left(\frac{1}{4} - \frac{1}{5} \right) = \frac{3}{10}.
$$

Therefore, $VarX = \frac{3}{10} - \frac{1}{4} = \frac{1}{20}$.

p. 275–277, #6. (a) We know that

$$
0.3333 \approx \frac{1}{3} = P\{X \le 0\} = \Phi\left(-\frac{\mu}{\sigma}\right) = 1 - \Phi\left(\frac{\mu}{\sigma}\right).
$$

Equivalently, $\Phi(\mu/\sigma) \approx 0.6667$. This and the normal table together tell us that

$$
\frac{\mu}{\sigma} \approx 0.43.
$$

Similarly,

$$
0.6667 \approx \frac{2}{3} = P\{X \le 1\} = \Phi\left(\frac{1-\mu}{\sigma}\right).
$$

Therefore,

$$
\frac{1-\mu}{\sigma} \approx 0.43.
$$

In other words,

$$
0.43 \approx \frac{1-\mu}{\sigma} \approx \frac{1}{\sigma} - 0.43
$$

Therefore, $\sigma \approx 1/(2 \times 0.43) \approx 1.162$ and $\mu \approx 0.43\sigma \approx$ $0.43 \times 1.162 \approx 0.499$.

(b) If instead $P\{X \leq 1\} = \frac{3}{4}$, then

$$
0.75 = P\{X \le 1\} = \Phi\left(\frac{1-\mu}{\sigma}\right) \quad \Rightarrow \quad \frac{1-\mu}{\sigma} \approx 0.67.
$$

Therefore,

$$
0.67 \approx \frac{1}{\sigma} - 0.43 \quad \Rightarrow \quad \sigma \approx \frac{1}{1.1} = \frac{10}{11}.
$$

And therefore, $\mu \approx 0.43\sigma = \frac{4.3}{11} \approx 0.39$.

Figure 1: Problem 12(a), pp. 275–277

p. 275–277, $\#12$. The solution is obtained as follows. First compute the following for all x :

$$
P\{X \le x\} = \int_{-\infty}^{x} f.
$$

Then use the fundamental theorem of calculus to deduce that

$$
f(x) = \frac{d}{dx} P\{X \le x\}.
$$

- (a) According to the picture $f(x) = 0$ if $x \le -2$ or $x \ge 2$. If $-2 < x < 2$, then $P\{X \leq x\}$ is the area to the left of x on the horizontal axis divided by the total area which is 8. [For instance, if $x = 0$, then this area is 1/2.] We compute the area depending on whether or not $-2 < x < 0$:
	- i. If $x < 0$, then the area to the left of x is the area of a triangle of base $2(x + 2)$ and height $x + 2$; see Figure 1. The area of that triangle is $\frac{1}{2} \times 2(x+2) \times (x+2) =$ $(x+2)^2$. Therefore, whenever $-2 < x < 0$,

$$
P\{X \le x\} = \frac{(x+2)^2}{8} \quad \Rightarrow \quad f(x) = \frac{2(x+2)}{8} = \frac{x+2}{4}.
$$

:

And by similar [symmetric] arguments, if $2 > x > 0$ then

$$
f(x) = \frac{-x+2}{4}
$$

The other pictures are handled similarly; you have to work with the shapes a bit more. Because the remaining ideas are those of elementary geometry [and not probability] I will leave them for you to mull over.

- p. 293–295, #3. We know that if X := time to the next earthquake, then $P\{X >$ $t\} = e^{-t}$ for all $t > 0$.
	- (a) $P\{X > 1\} = e^{-1}$.
	- (b) $P\{X > 1/2\} = e^{-1/2}$.
	- (c) $P\{X > 2\} = e^{-2}$.
	- (d) $P\{X > 10\} = e^{-10}$.
- p. 293–295, $#4$. Let X be the lifetime of a randomly-selected component. We know that $EX = 10$, therefore, X is exponentially distributed with parameter $\lambda = 1/10$. That is, $P\{X > t\} = e^{-t/10}$.
	- (a) $P\{X > 20\} = e^{-20/10} = e^{-2}$.
	- (b) We wish to find a number m such that

$$
\frac{1}{2} = P\{X > m\} = e^{-m/10} \Rightarrow m = 10 \ln 2.
$$

- (c) The SD of an exponential with parameter λ is λ ; therefore, $SD(X) = 10$.
- (d) If X_1, \ldots, X_{100} denote the respective lifetimes, then by the central limit theorem,

$$
P\left\{\frac{X_1 + \dots + X_{100}}{100} > 11\right\} \approx 1 - \Phi\left(\frac{11 - \mu}{\sigma}\right) = 1 - \Phi(0.1),
$$

where $\mu = \sigma = 10$. This probability is very close to $1 - 0.54 = 0.46$.

(e) We need to know that the sum of the two exponentials is a gamma. But we skip this for now.

p. 293–295, #7. We know that $P\{T \le t\} = 1 - e^{-\lambda t}$ for all $t > 0$. Therefore,

$$
p = 1 - e^{-\lambda t_p} \quad \Rightarrow \quad t_p = \frac{1}{\lambda} \ln \left(\frac{1}{1-p} \right).
$$