Solutions to Homework 7

Math 5010-1, Summer 2010

July 12, 2010

p. 275277, #3. We will need the antiderivative of (1 —x) several times; there-
fore Let us compute that first:
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(a) Need to choose c so that f_oof = 1. That is,
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Therefore, c = 6.
(b) The answer is “one half, by symmetry.” Alternatively,

1
3

0 3

oo

1/2 2 1/2 3 1/2
P{X§1/2}:/ 6z(l—z)de =6 — - —
0 2 0 3 0
_1
=3
(c) We compute
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(d) We can compute directly by integration, or observe that

P{1/3 < X < 1/2} = P{X < 1/2}—P{X < 1/3} = %_% - %



p. 275277, #6.

(e) As for the mean,
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Next we compute the second moment of X:
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Therefore, VarX = 3 —
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We know that
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Equivalently, ®(u/0) = 0.6667. This and the normal
table together tell us that

Lad ~ 0.43.
o
Similarly,
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Therefore,
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K ~0.43.
In other words,
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Therefore, 0 = 1/(2 X 0.43) = 1.162 and u = 0.430 =
0.43 X 1.162 = 0.499.

If instead P{X < 1} = 2, then
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Therefore,
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And therefore, u = 0.430 = 32 = 0.39.
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Figure 1: Problem 12(a), pp. 275—277

p. 275277, #12. The solution is obtained as follows. First compute the follow-

ing for all x:
oy

P{Xga;}:/ 1.

Then use the fundamental theorem of calculus to deduce that

f(@) = - P{X <z}

(a) According to the picture f(z) =0 ifz < —2orx > 2. If
—2 < x <2 then P{X < z} is the area to the left of =
on the horizontal axis divided by the total area which is 8.
[For instance, if £ = 0, then this area is 1/2.] We compute
the area depending on whether or not —2 < z < 0:

i. If £ < 0O, then the area to the Left of x is the area of a
triangle of base 2(x 4+ 2) and height = + 2; see Figure
1. The area of that triangle is % X2(x+2) X (z+2) =
(z 4 2)?. Therefore, whenever —2 < = < 0,
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And by similar [symmetric] arguments, if 2 > = > 0
then P
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The other pictures are handled similarly; you have to
work with the shapes a bit more. Because the remain-
ing ideas are those of elementary geometry [and not
probability] I will Leave them for you to mull over.

p. 293—295, #3. We know that if X := time to the next earthquake, then P{X >
t} =etforallt > 0.
(@) P{X >1}=e 1.
(b) P{X > 1/2} = e~ 1/2,
(©) P{X >2} =e2.
(d) P{X > 10} = 710,

p. 293—295, #4. Let X be the Lifetime of a randomly-selected component. We
know that EX = 10, therefore, X is exponentially distributed
with parameter A = 1/10. That is, P{X > t} = e~ /10,
(a) P{X > 20} = e720/10 = g2,
(b) We wish to find a number m such that

1
5 = PIX>m} = e”™10 = m=10ln2.
(c) The SD of an exponential with parameter X is \; therefore,
SD(X) = 10.
(d) If X1,..., X100 denote the respective Lifetimes, then by the

central Limit theorem,

p {Xl + 1 -+ X100 > 11} ~1—0o <%> =1—®(0.1),
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where 4 = o = 10. This probability is very close to
1 — 0.54 = 0.46.

(e) We need to know that the sum of the two exponentials is
a gamma. But we skip this for now.

p. 293—295, #7. We know that P{T <t} =1 — e~ for all t > 0. Therefore,
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