
Solutions to Homework 6

Math 5010-1, Summer 2010

July 7, 2010

p. 202–207, #2. Clearly, Y has a binomial distribution with parameters n = 3
and p = 1

2
. That is,
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Therefore,

E(Y 2) =

„
02 ˆ 1

8

«
+

„
12 ˆ 3

8

«
+

„
22 ˆ 3

8

«
+

„
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8

«
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8
= 3:

Also,

E(Y 4) =

„
04 ˆ 1

8

«
+

„
14 ˆ 3

8

«
+

„
24 ˆ 3
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«
+

„
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8

«
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8
=
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2
:

Therefore,

Var(Y 2) = E(Y 4)`
˘
E(Y 2)

¯2
=

33

2
` 32 =

15

2
:

p. 202–207, #3. Know: EX = EY = EZ = 1 and VarX = VarY = VarZ = 2.

(a) E(2X + 3Y ) = 2E(X) + 3E(Y ) = 5.

(b) Var(2X + 3Y ) = Var(2X) + Var(3Y ), by independence.
Therefore, Var(2X + 3Y ) = 4VarX + 9VarY = 26:
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(c) We know that if X1 and X2 are independent, then E(X1X2) =
E(X1)E(X2). This and induction together prove that if
X1; : : : ; Xn are independent, then E(X1 ´ ´ ´Xn) = E(X1) ´ ´ ´E(Xn).
Therefore, in particular,

E(XY Z) = E(X) ´ E(Y ) ´ E(Z) = 1:

(d) We write

Var(XY Z) = E(X2Y 2Z2)`fE(XY Z)g2 = E(X2)´E(Y 2)´E(Z2)`1:

Now, 2 = Var(X) = E(X2)` (EX)2 = E(X2)`1. There-
fore, E(X2) = 2 + 1 = 3. Similarly, E(Y 2) = E(Z2) = 3,
and consequently,

Var(XY Z) = 33 ` 1 = 26:

p. 202–207, #10. (a) Clearly,

E(Xk) =

„
1k ˆ 1

n

«
+´ ´ ´+

„
nk ˆ 1

n

«
=

1k + ´ ´ ´+ nk

n
=
s(k ; n)

n
:

And

E
ˆ
(X + 1)k

˜
=

2k + ´ ´ ´+ (n+ 1)k

n
=
s(k ; n+ 1)` 1

n
:

(b) By the binomial theorem,

(X + 1)k =
“k

0

”
Xk10 +

“k
1

”
Xk`111 +

“k
2

”
Xk`212 + ´ ´ ´+

“k
k

”
X01k

= Xk + kXk`1 +
“k

2

”
Xk`1 + ´ ´ ´+ 1:

Therefore,

kXk`1 +
“k

2

”
Xk`2 + ´ ´ ´+ 1 = (X + 1)k ` Xk:

Take expectations to find that

E

»
kXk`1 +

“k
2

”
Xk`2 + ´ ´ ´+ 1

–
=
s(k ; n+ 1)` 1

n
`
s(k ; n)

n
:

The right-hand side is 1
n
times s(k ; n+ 1)`s(k ; n)`1 =

(n+ 1)k ` 1, whence follows the desired result.

(c) E(X) = (1 + ´ ´ ´+ n)=n, and it is easy to see that

1 + ´ ´ ´+ n =
n(n+ 1)

2
:
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For instance, note that 2(1 + ´ ´ ´+ n) = n(n+ 1)
because we can write 2(1 + ´ ´ ´+ n) as

1 + 2 + ´ ´ ´+ n

+n+ (n` 1) + ´ ´ ´+ 1;

but sum in columns to see that every column is
n+ 1, and there are n columns.

Therefore,

E(X) =
n+ 1

2
:

(d) Apply (b) with k := 3 to find that

E
ˆ
3X2 + 3X + 1

˜
=

(n+ 1)3 ` 1

n
:

Now, Recall that

E(X) =
n+ 1

2
) 3E(X2) +

3(n+ 1)

2
+ 1| {z }

E[3X2+3X+1]

=
(n+ 1)3 ` 1

n
:

Solve to find that

E(X2) =
1

3

»
(n+ 1)3 ` 1

n
`

3(n+ 1)

2
` 1

–
=

1

3

»
n3 + 3n2 + 3n

n
` 3n+ 3

2
` 1

–
=

1

3

»
n2 + 3n+ 3` 3

2
n` 3

2
` 1

–
=

1

3

»
n2 +

3

2
n+

1

2

–
=

1

6

ˆ
2n2 + 3n+ 1

˜
=

(n+ 1)(2n+ 1)

6
:

Because the left-hand side is s(2 ;n)

n
= 12+´´´+n2

n
, we have

s(2 ; n) = n(n+ 1)(2n+ 1)=6. In other words, this gives a
probabilistic proof of the following classical identity [due
to the Archimedes]:

12 + ´ ´ ´+ n2 =
n(n+ 1)(2n+ 1)

6
:

3



(e) VarX = E(X2)` (EX)2. Therefore,

VarX =
(n+ 1)(2n+ 1)

6
`
„
n+ 1

2

«2

=
n+ 1

2

„
2n+ 1

3
` n+ 1

2

«
=
n+ 1

2

„
(4n+ 2)` (3n+ 3)

6

«
=
n+ 1

2
ˆ n` 1

6
=
n2 ` 1

12
:

(f) Directly check.
(g) Now we apply (b) with k = 4:

E
ˆ
4X3 + 6X2 + 4X + 1

˜
=

(n+ 1)4 ` 1

n
: (1)

Because E(X) = n+1
2

and E(X2) =
(n+1)(2n+1)

6
, the left-

hand side is

4E(X3) + 6E(X2) + 4E(X) + 1

= 4
s(3 ; n)

n
+ (n+ 1)(2n+ 1) + 2(n+ 1) + 1:

Plug this into (1) to find that

4
s(3 ; n)

n
+(n+ 1)(2n+ 1) + 2(n+ 1) + 1| {z }

(2n2+3n+1)+(2n+2)+1=2n2+5n+4

=
(n+ 1)4 ` 1

n| {z }
n4+4n3+6n2+4n

n
=n3+4n2+6n+4

:

Equivalently,

4
s(3 ; n)

n
+ 2n2 + 5n+ 4 = n3 + 4n2 + 6n+ 4;

which simplifies to

4
s(3 ; n)

n
= n3 + 2n2 +n = n(n2 + 2n+ 1) = n(n+ 1)2:

Thus,

s(3 ; n) =

»
n(n+ 1)

2

–2

= [s(1 ; n)]2:

This is another famous formula [due to Al Karaji]:

13 + ´ ´ ´+ n3 =

»
n(n+ 1)

2

–2

:
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p. 202–207, #13. Let — = 100 and ff = 10 respectively denote the mean and the
SD.

(a) Select one person at random; call his or her IQ score X.
Now EX = — = 100 and SDX = ff = 10. Because
130 = 100 + (3ˆ 10) = —+ (3ff),

PfX > 130g » P fjX ` —j > 3ffg » Var X
(3ff)2

=
1

9
:

But PfX > 130g is the total number of scores that exceed
130 divided by the population size. Therefore, the number
of scores that exceed 130 is at most (1=9)th of the total
population size.

(b) By symmetry,

PfX > 130g =
1

2
P fjX ` —j > 3ffg » 1

2

Var X
(3ff)2

=
1

18
:

Therefore, the number of scores that exceed 130 is at most
(1=18)th of the total population size.

(c) If X is approximately normal, then we can compute [in-
stead of estimate, using Chebyshev inequality],

PfX > 130g = P


X ` 100

10
> 3

ff
= 1` ˘(3)

ı 1` 0:9987 = 0:0013:

Therefore, the number of scores that exceed 130 is approx-
imately 0:13 percent of the total population size.

p. 217–221, #5. Let Xi denote the number of tosses required for the ith per-
son to get his or her first heads. We know that each Xi is
geometrically distributed:

PfXi = kg = q
k`1
i

pi for k = 1; 2; : : : ;

where qi := 1` pi.

(a) Mary is the second person. Therefore,

PfX2 > ng =

1X
k=n+1

q
k`1
2 p2 = p2

1X
k=n+1

q
k`1
2 = p2 ´

qn2

1` q2
;

thanks to properties of geometric series. Because p2 =
1` q2, it follows that PfX2 > ng = qn2 .
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(b) Let Y denote the minimum of X1, X2, and X3. We are
asked to find PfY > ng. But

PfY > ng = P fX1 > n ; X2 > n ; X3 > ng
= PfX1 > ng ´ PfX2 > ng ´ PfX3 > ng;

by independence. Plug in the probabilities [from (a)] to
find that

PfY > ng = qn1 q
n
2 q

n
3 = (q1q2q3)n:

(c) Because PfY = ng + PfY > ng = PfY > n ` 1g, we
have

PfY = ng = PfY > n` 1g ` PfY > ng
= (q1q2q3)n`1 ` (q1q2q3)n

= (q1q2q3)n`1 [1` q1q2q3] :

In other words, the random variable Y has a geometric
distribution with parameter 1` q1q2q3!

(d) We want PfX1 > X2 ; X3 > X2g. Once again,

PfX1 > X2 ; X3 > X2g =

1X
n=1

PfX2 = n ;X1 > n ;X3 > ng

=

1X
n=1

PfX2 = ngPfX1 > ngPfX3 > ng

=

1X
n=1

q
n`1
2 p2q

n
1 q

n
3 :

This expression can be simplified as follows:

PfX1 > X2 ; X3 > X2g = p2q1q3

1X
n=1

(q2q1q3)n`1 = p2q1q3

1X
k=0

(q2q1q3)k

=
p2q1q3

1` q1q2q3
:

p. 217–221, #10. We will need, for this problem, two identities that were dis-
cussed in the lectures. Namely, that if 0 < p < 1, then:

1X
k=0

kpk`1 =
d

dp

1X
k=0

pk =
d

dp

„
1

1` p

«
=

1

q2
; (2)
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and because k2 = k(k` 1) + k,

1X
k=0

k2pk`2 =

1X
k=0

k(k` 1)pk`2 +

1X
k=0

kpk`2

=
d2

dp2

1X
k=0

pk +
1

p

1X
k=0

kpk`1 =
2

q3
+

1

pq2
:

(3)

(a) First, note that PfX = 2g = P (S1F2) + P (F1S2) = pq +
qp [= 2pq]: Also, PfX = 3g = P (S1S1F2)+P (F1F2S3) =
p2q + q2p. And now we keep going to find that

PfX = kg = pk`1q + qk`1p for all k – 2:

(b) We follow the definition of expectation:

E(X) =

1X
k=2

k
`
pk`1q + qk`1p

´

= q

1X
k=2

kpk`1 + p

1X
k=2

kqk`1:

Eq. (2) above tells us that

1X
k=0

kpk`1 =
1

q2
)

1X
k=2

kpk`1 =
1

q2
`

1X
k=0

kpk`1 =
1

q2
`1:

Similarly,
P1

k=2 kq
k`1 = p`2 ` 1: Because p + q = 1, it

follows that

E(X) =
1

q
` q +

1

p
` p =

1

q
+

1

p
` 1 =

1

pq
` 1:

(c) We compute

E(X2) =

1X
k=2

k2
`
pk`1q + qk`1p

´

= q

1X
k=2

k2pk`1 + p

1X
k=2

k2qk`1

= pq

1X
k=2

k2pk`2 + pq

1X
k=2

k2qk`2:
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Thanks to eq. (3),
1X
k=2

k2pk`2 =
2

q3
+

1

pq2
`

1X
k=0

k2pk`2 =
2

q3
+

1

pq2
` 1

p
:

Similarly,
1X
k=2

k2qk`2 =
2

p3
+

1

qp2
` 1

q
:

Therefore,

E(X2) =
2p

q2
+

1

q
` q +

2q

p2
+

1

p
` p:

Now p + q = 1 and p`1 + q`1 = (p + q)=pq = (pq)`1.
Therefore,

E(X2) =
2p

q2
+

2q

p2
+

1

pq
` 1 =

2(p3 + q3)

p2q2
+

„
1

pq
` 1

«
:

This can be simplified even further: By the binomial the-
orem,

1 = (p+ q)3 = p3 + 3p2q + 3pq2 + q3:

Therefore,

p3 + q3 = 1` 3p2q ` 3pq2 = 1` 3pq(p+ q) = 1` 3pq:

Consequently,

E(X2) =
2

p2q2
(1` 3pq) +

„
1

pq
` 1

«
:

And

Var(X) =
2

p2q2
(1` 3pq) +

„
1

pq
` 1

«
`
„

1

pq
` 1

«2

:

Let — := 1=(pq) to see that E(X) = —` 1, and

Var(X) = 2—2 ` 6—+ (—` 1)` (—` 1)2 = —2 ` 3—` 2:

p. 217–221, #12. (a) Let qi := 1` pi to find that

PfW1 = W2g =

1X
k=1

PfW1 = W2 = kg =

1X
k=1

PfW1 = kgPfW2 = kg

=

1X
k=1

q
k`1
1 p1q

k`1
2 p2 = p1p2

1X
k=1

(q1q2)k`1 = p1p2

1X
j=0

(q1q2)j

=
p1p2

1` q1q2
:
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(b) Once again,

PfW1 < W2g =

1X
k=1

PfW1 = k < W2g =

1X
k=1

PfW1 = kgPfW2 > kg

=

1X
k=1

q
k`1
1 p1q

k
2 = p1q2

1X
k=1

(q1q2)k`1 =
p1q2

1` q1q2
:

(c) PfW1 > W2g is the same as PfW2 > W1g but with the
roles of (p1 ; q1) and (p2 ; q2) reversed. That is,

PfW1 > W2g =
p2q1

1` q1q2
:

(d) LetM := min(W1 ;W2). We saw in #5 thatM is geometric
with parameter 1` q1q2. Explicitly said:

PfM > ng = PfW1 > ngPfW2 > ng = qn1 q
n
2 = (q1q2)n:

Therefore,

PfM = ng = PfM > n`1g`PfM > ng = (q1q2)n`1`(q1q2)n:

Factor to find that

PfM = ng = (q1q2)n [1` (q1q2)] :

This is of the form qn`1p; therefore, M has a geometric
distribution with parameter 1` q1q2.

(e) Let M := max(W1 ;W2). Then,

P
n
M < k

o
= PfW1 < k ;W2 < kg = PfW1 < kgPfW2 < kg;

by independence. Now, PfW1 < kg = 1 ` PfW1 > k +

1g = 1 ` q
k+1
1 ; see #5(a). Similarly, PfW2 < kg =

1` qk+1
2 . Therefore, for all k – 1,

P
n
M < k

o
=
“

1` qk+1
1

”
´
“

1` qk+1
2

”
:

From this we find the distribution of M as follows: PfM =

kg = PfM < k+ 1g ` PfM < kg (why?), whence for all
k – 1,

P
n
M = k

o
=
“

1` qk+2
1

”
´
“

1` qk+2
2

”
`
“

1` qk+1
1

”
´
“

1` qk+1
2

”
:
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p. 233–236, #8. Suppose that pulses arrive independently in time; then the
“Random Scatter Theorem” (p. 230) tells us that the total
number of pulses in a given half-minute period is distributed
according to the Poisson distribution with – = 5.

p. 233–236, #10. For parts (a) and (b) it might help to recall that E(X) = –
and Var(X) = –.

(a) E(3X + 5) = 3E(X) + 5 = 3–+ 5.

(b) Var(3X + 5) = 9VarX = 9–.

(c) This part requires a direct computation:

E

„
1

1 + X

«
=

1X
k=0

„
1

1 + k

«
e`––k

k!
=

1X
k=0

e`––k

(k + 1)!

=
e`–

–

1X
j=1

–j

j!
[j := k + 1]

=
e`–

–

0@ 1X
j=0

–j

j!
` 1

1A =
e`–

–

`
e– ` 1

´
=

1` e`–

–
:
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