Solutions to Homework 6

Math 5010-1, Summer 2010

July 7, 2010

p. 202–207, #2. Clearly, Y has a binomial distribution with parameters n=3 and $p=\frac{1}{2}$. That is,

k	$P{Y = k}$
0	$\binom{3}{0}(\frac{1}{2})^3 = \frac{1}{8}$
1	$\binom{3}{1}(\frac{1}{2})^3 = \frac{3}{8}$
2	$\binom{3}{2}(\frac{1}{2})^3 = \frac{3}{8}$
3	$\binom{3}{3}(\frac{1}{2})^3 = \frac{1}{8}$

Therefore,

$$E(Y^{2}) = \left(0^{2} \times \frac{1}{8}\right) + \left(1^{2} \times \frac{3}{8}\right) + \left(2^{2} \times \frac{3}{8}\right) + \left(3^{2} \times \frac{1}{8}\right) = \frac{24}{8} = 3.$$

Also,

$$E(Y^{4}) = \left(0^{4} \times \frac{1}{8}\right) + \left(1^{4} \times \frac{3}{8}\right) + \left(2^{4} \times \frac{3}{8}\right) + \left(3^{4} \times \frac{1}{8}\right) = \frac{132}{8} = \frac{33}{2}.$$

Therefore,

Var(Y²) = E(Y⁴) - {E(Y²)}² =
$$\frac{33}{2} - 3^2 = \frac{15}{2}$$
.

p. 202–207, #3. Know: EX = EY = EZ = 1 and VarX = VarY = VarZ = 2.

- (a) E(2X + 3Y) = 2E(X) + 3E(Y) = 5.
- (b) Var(2X + 3Y) = Var(2X) + Var(3Y), by independence. Therefore, Var(2X + 3Y) = 4VarX + 9VarY = 26.

(c) We know that if X_1 and X_2 are independent, then $E(X_1X_2) = E(X_1)E(X_2)$. This and induction together prove that if X_1, \ldots, X_n are independent, then $E(X_1 \cdots X_n) = E(X_1) \cdots E(X_n)$. Therefore, in particular,

$$E(XYZ) = E(X) \cdot E(Y) \cdot E(Z) = 1.$$

(d) We write

$$Var(XYZ) = E(X^{2}Y^{2}Z^{2}) - \{E(XYZ)\}^{2} = E(X^{2}) \cdot E(Y^{2}) \cdot E(Z^{2}) - 1.$$

Now, $2 = Var(X) = E(X^{2}) - (EX)^{2} = E(X^{2}) - 1.$ There-
fore, $E(X^{2}) = 2 + 1 = 3.$ Similarly, $E(Y^{2}) = E(Z^{2}) = 3,$
and consequently,

$$Var(XYZ) = 3^3 - 1 = 26.$$

p. 202-207, #10. (a) Clearly,

$$E(X^k) = \left(1^k \times \frac{1}{n}\right) + \dots + \left(n^k \times \frac{1}{n}\right) = \frac{1^k + \dots + n^k}{n} = \frac{s(k, n)}{n}$$

And

$$E[(X+1)^{k}] = \frac{2^{k} + \dots + (n+1)^{k}}{n} = \frac{s(k, n+1) - 1}{n}.$$

(b) By the binomial theorem,

$$(X+1)^{k} = \binom{k}{0} X^{k} 1^{0} + \binom{k}{1} X^{k-1} 1^{1} + \binom{k}{2} X^{k-2} 1^{2} + \dots + \binom{k}{k} X^{0} 1^{k}$$
$$= X^{k} + k X^{k-1} + \binom{k}{2} X^{k-1} + \dots + 1.$$

Therefore,

$$kX^{k-1} + \binom{k}{2}X^{k-2} + \dots + 1 = (X+1)^k - X^k.$$

Take expectations to find that

$$E\left[kX^{k-1} + \binom{k}{2}X^{k-2} + \dots + 1\right] = \frac{s(k, n+1) - 1}{n} - \frac{s(k, n)}{n}.$$

The right-hand side is $\frac{1}{n}$ times $s(k, n+1) - s(k, n) - 1 = (n+1)^k - 1$, whence follows the desired result.

(c) $E(X) = (1 + \dots + n)/n$, and it is easy to see that

$$1+\cdots+n=\frac{n(n+1)}{2}.$$

For instance, note that $2(1 + \cdots + n) = n(n + 1)$ because we can write $2(1 + \cdots + n)$ as

1 + 2	$+\cdots + n$
+n + (n - 1)	$+\cdots+1$,

but sum in columns to see that every column is n + 1, and there are n columns.

Therefore,

$$E(X) = \frac{n+1}{2}.$$

(d) Apply (b) with k := 3 to find that

$$E[3X^2 + 3X + 1] = \frac{(n+1)^3 - 1}{n}.$$

Now, Recall that

$$E(X) = \frac{n+1}{2} \quad \Rightarrow \quad \underbrace{3E(X^2) + \frac{3(n+1)}{2} + 1}_{E[3X^2 + 3X + 1]} = \frac{(n+1)^3 - 1}{n}.$$

Solve to find that

$$E(X^{2}) = \frac{1}{3} \left[\frac{(n+1)^{3}-1}{n} - \frac{3(n+1)}{2} - 1 \right]$$

= $\frac{1}{3} \left[\frac{n^{3}+3n^{2}+3n}{n} - \frac{3n+3}{2} - 1 \right]$
= $\frac{1}{3} \left[n^{2}+3n+3 - \frac{3}{2}n - \frac{3}{2} - 1 \right]$
= $\frac{1}{3} \left[n^{2} + \frac{3}{2}n + \frac{1}{2} \right] = \frac{1}{6} \left[2n^{2}+3n+1 \right] = \frac{(n+1)(2n+1)}{6}$

Because the left-hand side is $\frac{s(2,n)}{n} = \frac{1^2 + \dots + n^2}{n}$, we have s(2,n) = n(n+1)(2n+1)/6. In other words, this gives a probabilistic proof of the following classical identity [due to the Archimedes]:

$$1^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}.$$

(e)
$$\operatorname{Var} X = E(X^2) - (EX)^2$$
. Therefore,

$$\operatorname{Var} X = \frac{(n+1)(2n+1)}{6} - \left(\frac{n+1}{2}\right)^2$$
$$= \frac{n+1}{2} \left(\frac{2n+1}{3} - \frac{n+1}{2}\right)$$
$$= \frac{n+1}{2} \left(\frac{(4n+2) - (3n+3)}{6}\right)$$
$$= \frac{n+1}{2} \times \frac{n-1}{6} = \frac{n^2 - 1}{12}.$$

- (f) Directly check.
- (g) Now we apply (b) with k = 4:

$$E\left[4X^{3} + 6X^{2} + 4X + 1\right] = \frac{(n+1)^{4} - 1}{n}.$$
 (1)

Because $E(X) = \frac{n+1}{2}$ and $E(X^2) = \frac{(n+1)(2n+1)}{6}$, the left-hand side is

$$4E(X^{3}) + 6E(X^{2}) + 4E(X) + 1$$

= $4\frac{s(3, n)}{n} + (n+1)(2n+1) + 2(n+1) + 1.$

Plug this into (1) to find that

$$4\frac{s(3,n)}{n} + \underbrace{(n+1)(2n+1) + 2(n+1) + 1}_{(2n^2+3n+1)+(2n+2)+1=2n^2+5n+4} = \underbrace{\frac{(n+1)^4 - 1}{n}}_{\frac{n^4+4n^3+6n^2+4n}{n} = n^3+4n^2+6n+4}$$

Equivalently,

$$4\frac{s(3,n)}{n} + 2n^2 + 5n + 4 = n^3 + 4n^2 + 6n + 4$$

which simplifies to

$$4\frac{s(3,n)}{n} = n^3 + 2n^2 + n = n(n^2 + 2n + 1) = n(n+1)^2.$$

Thus,

$$s(3, n) = \left[\frac{n(n+1)}{2}\right]^2 = [s(1, n)]^2.$$

This is another famous formula [due to Al Karaji]:

$$1^3 + \dots + n^3 = \left[\frac{n(n+1)}{2}\right]^2$$
.

- p. 202–207, #13. Let $\mu = 100$ and $\sigma = 10$ respectively denote the mean and the SD.
 - (a) Select one person at random; call his or her IQ score X. Now $EX = \mu = 100$ and $SDX = \sigma = 10$. Because $130 = 100 + (3 \times 10) = \mu + (3\sigma)$,

$$P\{X > 130\} \le P\{|X - \mu| > 3\sigma\} \le \frac{\text{Var } X}{(3\sigma)^2} = \frac{1}{9}$$

But $P\{X > 130\}$ is the total number of scores that exceed 130 divided by the population size. Therefore, the number of scores that exceed 130 is at most (1/9)th of the total population size.

(b) By symmetry,

$$P\{X > 130\} = \frac{1}{2}P\{|X - \mu| > 3\sigma\} \le \frac{1}{2}\frac{\operatorname{Var} X}{(3\sigma)^2} = \frac{1}{18}.$$

Therefore, the number of scores that exceed 130 is at most (1/18)th of the total population size.

(c) If X is approximately normal, then we can compute [instead of estimate, using Chebyshev inequality],

$$P\{X > 130\} = P\left\{\frac{X - 100}{10} > 3\right\} = 1 - \Phi(3)$$
$$\approx 1 - 0.9987 = 0.0013.$$

Therefore, the number of scores that exceed 130 is approximately 0.13 percent of the total population size.

p. 217–221, #5. Let X_i denote the number of tosses required for the *i*th person to get his or her first heads. We know that each X_i is geometrically distributed:

$$P\{X_i = k\} = q_i^{k-1} p_i$$
 for $k = 1, 2, ...,$

where $q_i := 1 - p_i$.

(a) Mary is the second person. Therefore,

$$P\{X_2 > n\} = \sum_{k=n+1}^{\infty} q_2^{k-1} p_2 = p_2 \sum_{k=n+1}^{\infty} q_2^{k-1} = p_2 \cdot \frac{q_2^n}{1-q_2},$$

thanks to properties of geometric series. Because $p_2 = 1 - q_2$, it follows that $P\{X_2 > n\} = q_2^n$.

(b) Let Y denote the minimum of X_1 , X_2 , and X_3 . We are asked to find $P\{Y > n\}$. But

$$P\{Y > n\} = P\{X_1 > n, X_2 > n, X_3 > n\}$$

= $P\{X_1 > n\} \cdot P\{X_2 > n\} \cdot P\{X_3 > n\},$

by independence. Plug in the probabilities [from (a)] to find that

$$P\{Y > n\} = q_1^n q_2^n q_3^n = (q_1 q_2 q_3)^n.$$

(c) Because $P\{Y = n\} + P\{Y > n\} = P\{Y > n - 1\}$, we have

$$P\{Y = n\} = P\{Y > n - 1\} - P\{Y > n\}$$
$$= (q_1q_2q_3)^{n-1} - (q_1q_2q_3)^n$$
$$= (q_1q_2q_3)^{n-1} [1 - q_1q_2q_3].$$

In other words, the random variable Y has a geometric distribution with parameter $1 - q_1 q_2 q_3!$

(d) We want $P\{X_1 > X_2, X_3 > X_2\}$. Once again,

$$P\{X_1 > X_2, X_3 > X_2\} = \sum_{n=1}^{\infty} P\{X_2 = n, X_1 > n, X_3 > n\}$$
$$= \sum_{n=1}^{\infty} P\{X_2 = n\} P\{X_1 > n\} P\{X_3 > n\}$$
$$= \sum_{n=1}^{\infty} q_2^{n-1} p_2 q_1^n q_3^n.$$

This expression can be simplified as follows:

$$P\{X_1 > X_2, X_3 > X_2\} = p_2 q_1 q_3 \sum_{n=1}^{\infty} (q_2 q_1 q_3)^{n-1} = p_2 q_1 q_3 \sum_{k=0}^{\infty} (q_2 q_1 q_3)^k$$
$$= \frac{p_2 q_1 q_3}{1 - q_1 q_2 q_3}.$$

p. 217–221, #10. We will need, for this problem, two identities that were discussed in the lectures. Namely, that if 0 , then:

$$\sum_{k=0}^{\infty} k p^{k-1} = \frac{d}{dp} \sum_{k=0}^{\infty} p^k = \frac{d}{dp} \left(\frac{1}{1-p} \right) = \frac{1}{q^2}; \qquad (2)$$

and because $k^2 = k(k-1) + k$,

$$\sum_{k=0}^{\infty} k^2 p^{k-2} = \sum_{k=0}^{\infty} k(k-1)p^{k-2} + \sum_{k=0}^{\infty} kp^{k-2}$$

$$= \frac{d^2}{dp^2} \sum_{k=0}^{\infty} p^k + \frac{1}{p} \sum_{k=0}^{\infty} kp^{k-1} = \frac{2}{q^3} + \frac{1}{pq^2}.$$
(3)

(a) First, note that $P\{X = 2\} = P(S_1F_2) + P(F_1S_2) = pq + qp [= 2pq]$. Also, $P\{X = 3\} = P(S_1S_1F_2) + P(F_1F_2S_3) = p^2q + q^2p$. And now we keep going to find that

$$P\{X = k\} = p^{k-1}q + q^{k-1}p$$
 for all $k \ge 2$.

(b) We follow the definition of expectation:

$$E(X) = \sum_{k=2}^{\infty} k \left(p^{k-1}q + q^{k-1}p \right)$$
$$= q \sum_{k=2}^{\infty} k p^{k-1} + p \sum_{k=2}^{\infty} k q^{k-1}.$$

Eq. (2) above tells us that

$$\sum_{k=0}^{\infty} k p^{k-1} = \frac{1}{q^2} \quad \Rightarrow \quad \sum_{k=2}^{\infty} k p^{k-1} = \frac{1}{q^2} - \sum_{k=0}^{1} k p^{k-1} = \frac{1}{q^2} - 1.$$

Similarly, $\sum_{k=2}^{\infty} kq^{k-1} = p^{-2} - 1$. Because p + q = 1, it follows that

$$E(X) = \frac{1}{q} - q + \frac{1}{p} - p = \frac{1}{q} + \frac{1}{p} - 1 = \frac{1}{pq} - 1.$$

(c) We compute

$$E(X^{2}) = \sum_{k=2}^{\infty} k^{2} \left(p^{k-1}q + q^{k-1}p \right)$$

= $q \sum_{k=2}^{\infty} k^{2} p^{k-1} + p \sum_{k=2}^{\infty} k^{2} q^{k-1}$
= $pq \sum_{k=2}^{\infty} k^{2} p^{k-2} + pq \sum_{k=2}^{\infty} k^{2} q^{k-2}.$

Thanks to eq. (3),

$$\sum_{k=2}^{\infty} k^2 p^{k-2} = \frac{2}{q^3} + \frac{1}{pq^2} - \sum_{k=0}^{1} k^2 p^{k-2} = \frac{2}{q^3} + \frac{1}{pq^2} - \frac{1}{p}.$$

Similarly,

$$\sum_{k=2}^{\infty} k^2 q^{k-2} = \frac{2}{p^3} + \frac{1}{qp^2} - \frac{1}{q}.$$

Therefore,

$$E(X^{2}) = \frac{2p}{q^{2}} + \frac{1}{q} - q + \frac{2q}{p^{2}} + \frac{1}{p} - p.$$

Now p + q = 1 and $p^{-1} + q^{-1} = (p+q)/pq = (pq)^{-1}$. Therefore,

$$E(X^2) = \frac{2p}{q^2} + \frac{2q}{p^2} + \frac{1}{pq} - 1 = \frac{2(p^3 + q^3)}{p^2 q^2} + \left(\frac{1}{pq} - 1\right).$$

This can be simplified even further: By the binomial theorem,

$$1 = (p+q)^3 = p^3 + 3p^2q + 3pq^2 + q^3.$$

Therefore,

$$p^3 + q^3 = 1 - 3p^2q - 3pq^2 = 1 - 3pq(p+q) = 1 - 3pq.$$

Consequently,

$$E(X^2) = \frac{2}{p^2 q^2} (1 - 3pq) + \left(\frac{1}{pq} - 1\right).$$

And

$$Var(X) = \frac{2}{p^2 q^2} (1 - 3pq) + \left(\frac{1}{pq} - 1\right) - \left(\frac{1}{pq} - 1\right)^2.$$

Let $\mu := 1/(pq)$ to see that $E(X) = \mu - 1$, and

$$Var(X) = 2\mu^2 - 6\mu + (\mu - 1) - (\mu - 1)^2 = \mu^2 - 3\mu - 2.$$

p. 217–221, #12. (a) Let $q_i := 1 - p_i$ to find that

$$P\{W_1 = W_2\} = \sum_{k=1}^{\infty} P\{W_1 = W_2 = k\} = \sum_{k=1}^{\infty} P\{W_1 = k\} P\{W_2 = k\}$$
$$= \sum_{k=1}^{\infty} q_1^{k-1} p_1 q_2^{k-1} p_2 = p_1 p_2 \sum_{k=1}^{\infty} (q_1 q_2)^{k-1} = p_1 p_2 \sum_{j=0}^{\infty} (q_1 q_2)^j$$
$$= \frac{p_1 p_2}{1 - q_1 q_2}.$$

(b) Once again,

$$P\{W_1 < W_2\} = \sum_{k=1}^{\infty} P\{W_1 = k < W_2\} = \sum_{k=1}^{\infty} P\{W_1 = k\} P\{W_2 > k\}$$
$$= \sum_{k=1}^{\infty} q_1^{k-1} p_1 q_2^k = p_1 q_2 \sum_{k=1}^{\infty} (q_1 q_2)^{k-1} = \frac{p_1 q_2}{1 - q_1 q_2}.$$

(c) $P\{W_1 > W_2\}$ is the same as $P\{W_2 > W_1\}$ but with the roles of (p_1, q_1) and (p_2, q_2) reversed. That is,

$$P\{W_1 > W_2\} = \frac{p_2 q_1}{1 - q_1 q_2}.$$

(d) Let $\underline{M} := \min(W_1, W_2)$. We saw in #5 that \underline{M} is geometric with parameter $1 - q_1q_2$. Explicitly said:

$$P\{\underline{M} > n\} = P\{W_1 > n\}P\{W_2 > n\} = q_1^n q_2^n = (q_1 q_2)^n.$$

Therefore,

$$P\{\underline{M} = n\} = P\{\underline{M} > n-1\} - P\{\underline{M} > n\} = (q_1q_2)^{n-1} - (q_1q_2)^n.$$

Factor to find that

$$P\{\underline{M} = n\} = (q_1q_2)^n [1 - (q_1q_2)].$$

This is of the form $q^{n-1}p$; therefore, <u>M</u> has a geometric distribution with parameter $1 - q_1q_2$.

(e) Let $\overline{M} := \max(W_1, W_2)$. Then,

$$P\left\{\overline{M} < k\right\} = P\{W_1 < k, W_2 < k\} = P\{W_1 < k\}P\{W_2 < k\},$$

by independence. Now, $P\{W_1 < k\} = 1 - P\{W_1 > k + 1\} = 1 - q_1^{k+1}$; see #5(a). Similarly, $P\{W_2 < k\} = 1 - q_2^{k+1}$. Therefore, for all $k \ge 1$,

$$P\left\{\overline{M} < k\right\} = \left(1 - q_1^{k+1}\right) \cdot \left(1 - q_2^{k+1}\right)$$

From this we find the distribution of \overline{M} as follows: $P\{\overline{M} = k\} = P\{\overline{M} < k+1\} - P\{\overline{M} < k\}$ (why?), whence for all $k \ge 1$,

$$P\left\{\overline{M}=k\right\} = \left(1-q_{1}^{k+2}\right) \cdot \left(1-q_{2}^{k+2}\right) - \left(1-q_{1}^{k+1}\right) \cdot \left(1-q_{2}^{k+1}\right).$$

- p. 233–236, #8. Suppose that pulses arrive independently in time; then the "Random Scatter Theorem" (p. 230) tells us that the total number of pulses in a given half-minute period is distributed according to the Poisson distribution with $\lambda = 5$.
- p. 233–236, #10. For parts (a) and (b) it might help to recall that $E(X) = \lambda$ and $Var(X) = \lambda$.
 - (a) $E(3X + 5) = 3E(X) + 5 = 3\lambda + 5$.
 - (b) $Var(3X + 5) = 9VarX = 9\lambda$.
 - (c) This part requires a direct computation:

$$E\left(\frac{1}{1+\lambda}\right) = \sum_{k=0}^{\infty} \left(\frac{1}{1+k}\right) \frac{e^{-\lambda}\lambda^{k}}{k!} = \sum_{k=0}^{\infty} \frac{e^{-\lambda}\lambda^{k}}{(k+1)!}$$
$$= \frac{e^{-\lambda}}{\lambda} \sum_{j=1}^{\infty} \frac{\lambda^{j}}{j!} \qquad [j := k+1]$$
$$= \frac{e^{-\lambda}}{\lambda} \left(\sum_{j=0}^{\infty} \frac{\lambda^{j}}{j!} - 1\right) = \frac{e^{-\lambda}}{\lambda} \left(e^{\lambda} - 1\right) = \frac{1 - e^{-\lambda}}{\lambda}.$$