Midterm 2 Solutions Math 5010–1, Spring 2005 - 1. An urn contains R red balls and W white balls, where R and W are strictly positive integers. Balls are drawn at random one after another. Every time a ball is drawn, it is replaced back in the urn together with N new balls of the same color. - (a) Compute the probability that a red ball is drawn on the first draw. - (b) Compute the probability that a red ball is drawn on the second draw. **Solution:** For (a): $P(\mathcal{R}_1) = \boxed{R/(R+W)}$. For (b), use the Bayes rule to find that $$\begin{split} P(\mathcal{R}_2) &= P(\mathcal{R}_2 \,|\, \mathcal{R}_1) P(\mathcal{R}_1) + P(\mathcal{R}_2 \,|\, \mathcal{W}_1) P(\mathcal{W}_1) \\ &= \frac{R+N}{R+W+N} \cdot \frac{R}{R+W} \\ &+ \frac{R}{R+W+N} \cdot \frac{W}{R+W} = \boxed{\frac{R}{R+W}}. \end{split}$$ 2. In a certain town, 60 percent of all property owners oppose an increase in the property tax while 80 percent of non-property owners favor it. If 65 percent of all registered voters are property owners, then what proposition of registered voters favor the tax increase? **Solution:** Let O and \mathcal{P} respectively denote "{oppose increase}" and "{property owner}." Then, $$\begin{split} P(O) &= P(O \mid \mathcal{P})P(\mathcal{P}) + P(O \mid \mathcal{P}^c)P(\mathcal{P}^c) \\ &= (0.6 \times 0.65) + (0.2 \times 0.35) = 0.46. \end{split}$$ Therefore, the answer is $1 - 0.46 = \boxed{0.54}$ 3. A pair of fair dice are cast, and the number of rolled dots, on each die, is recorded. Let X denote the maximum of the two numbers. Find the probability mass function of X. **Solution:** The possible values of X are 1, 2, ..., 6. To find P(X = 1) note that X = 1 if and only if we role (1,1); the probability is 1/36. Likewise, $P\{X = 2\}$ is the probability of roling any one of (2,1), (1,2), or (2,2); the chances then are 3/36. In general, we have $P\{X = n\} = (2n-1)/36$ for n = 1, ..., 6. - 4. A fair coin is cast until the first head appears. Let N denote the number of tosses needed to see the first head. - (a) Find the probability mass function of N. - (b) *Compute* $P\{3 \le N < 8\}$. **Solution:** Evidently, $P\{X = n\} = (1/2)^n$ for $n = 1, 2, \cdots$. Therefore, $P\{3 \le X < 8\} = P\{X = 3\} + \cdots + P\{X = 7\} = 0.242$. 5. Here is the simplest mathematical model for the evolution of the price of a commodity: At time zero, the value is zero. Then at every time-step $(n = 1, 2, \cdots)$, the stock-price goes up or down by one unit with probability $\frac{1}{2}$. If all stock movements are independent of one another, then compute the probability that the value is zero at time 2n. **Solution:** At any time we have the option of going right (' \rightarrow ') or left (' \leftarrow '). The question asks for the probability that, in 2n independent trials, we get exactly $n \rightarrow$'s and $n \leftarrow$'s. The answer is $\binom{2n}{n}(1/2)^{2n}$. [This is a question about binomials, why?]