Math 3210–1, Summer 2016 Solutions to Assignment 4

- **2.4.** #1. (a) $(n+1)^2 n^2 = 2n+1 > 0$; therefore, $\{n^2\}_{n=1}^{\infty}$ is increasing. It is clearly not bounded above [if it were, then we could find a finite number K such that $n^2 \leq K$ for all $n \in \mathbb{N}$; equivalently, $n \leq \sqrt{K}$ for all $n \in \mathbb{N}$. But this cannot be, since $\lfloor \sqrt{K} \rfloor + 1$ is a natural number].
 - (b) $\sqrt{n+1} > \sqrt{n}$ and hence

$$\frac{1}{\sqrt{n+1}} < \frac{1}{\sqrt{n}} \qquad \forall n \in \mathbb{N}.$$

That is, our sequence is decreasing. In particular, $1/\sqrt{n} \leq 1$ for all $n \in \mathbb{N}$. Since $1/\sqrt{n} \geq 0$ for all $n \in \mathbb{N}$, our sequence is bounded between 0 and 1 and is therefore a bounded sequence.

(c) Let $a_n = n/2^n$ for all $n \in \mathbb{N}$. Then,

$$\frac{a_{n+1}}{a_n} = \frac{(n+1)2^n}{n2^{n+1}} = \frac{n+1}{2n} \le \frac{n+n}{2n} = 1 \qquad \forall n \in \mathbb{N}.$$

This proves that $\{a_n\}_{n\in\mathbb{N}}$ is non increasing. Clearly $a_n \geq 0$ for all $n \in \mathbb{N}$. And its monotonicity shows that $a_n \leq a_1 = 1/2$ for all $n \in \mathbb{N}$. Therefore, $\{a_n\}_{n\in\mathbb{N}}$ is bounded.

(d) Let $a_n = n/(n+1)$ for all $n \in \mathbb{N}$. Then,

$$\frac{a_{n+1}}{a_n} = \frac{(n+1)^2}{n(n+2)} = \frac{n^2 + 2n + 1}{n^2 + 2n} > 1 \qquad \forall n \in \mathbb{N}.$$

Therefore, $\{a_n\}_{n\in\mathbb{N}}$ is increasing, whence also satisfies $a_n \ge a_1 = 1/2$ for all $n \in \mathbb{N}$. In the other direction, we have

$$a_n = \frac{n}{n+1} \le \frac{n+1}{n+1} = 1 \qquad \forall n \in \mathbb{N}.$$

Therefore, $\frac{1}{2} \leq a_n \leq 1$ for all n and hence $\{a_n\}_{n \in \mathbb{N}}$ is bounded.

2.4. #4. $a_n \ge 0$ for all $n \in \mathbb{N}$ because $d_i \ge 0$ for all $i \in \mathbb{N}$. And since $d_i \le 1$ for all $i \in \mathbb{N}$,

$$a_n \le \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^n} = 1 - \frac{1}{2^n} < 1 \qquad \forall n \in \mathbb{N},$$

using a basic fact about geometric series.

- **2.4.** #5. $s_{n+1} s_n = a_{n+1} \ge 0$ for all $n \in \mathbb{N}$. Therefore, $s_{n+1} \ge s_n$ for all $n \in \mathbb{N}$; that is, $\{s_n\}_{n=1}^{\infty}$ is non decreasing and hence has a limit thanks to Theorem 2.4.6.
- **2.5.** #1. $I_n = (0, 1/n)$ for all $n \in \mathbb{N}$.
- **2.5.** #2. $I_n = [n, \infty)$ for all $n \in \mathbb{N}$.
- **2.5.** #5. (a) Any subsequence of $\{a_n\}_{n\in\mathbb{N}}$ contains either infinitely-many terms of the form $-2^n \ [n\in\mathbb{N}]$ or infinitely-many terms of the form $2^n \ [n\in\mathbb{N}]$, or both. In any case we see that no infinite subsequence converges.
 - (b) For all $n \in \mathbb{N}$,

$$|a_n| \le \frac{5+n}{2+3n} \le \frac{5n+3n}{0+3n} = \frac{8}{3}.$$

Therefore, $\{a_n\}_{n=1}^{\infty}$ is a bounded sequence. We appeal to the Bolzano–Weierstrass theorem [Theorem 2.5.5] to conclude that $\{a_n\}_{n=1}^{\infty}$ has a convergent subsequence.

- (c) $(-1)^n \leq 1$, therefore $0 \leq a_n \leq 2$. This proves that $\{a_n\}_{n=1}^{\infty}$ is a bounded sequence. We appeal to the Bolzano–Weierstrass theorem [Theorem 2.5.5] to conclude that $\{a_n\}_{n=1}^{\infty}$ has a convergent subsequence.
- **2.5.** #8. Since $|\sin(n)| \le 1$ for all $n \in \mathbb{N}$, $\{\sin n\}_{n \in \mathbb{N}}$ is a bounded sequence. By the Bolzano-Weierstrass theorem [Theorem 2.5.5], $\{\sin n\}_{n \in \mathbb{N}}$ has a convergent subsequence.
- **2.6.** #1. (a) $\limsup_{n\to\infty} a_n = 1$, $\liminf_{n\to\infty} a_n = -1$.
 - (b) $|a_n| = 1/n$ for all $n \in \mathbb{N}$; therefore, $\lim_{n \to \infty} a_n = 0$. By Theorem 2.6.6, $\limsup_{n \to \infty} a_n = \lim_{n \to \infty} \inf_{n \to \infty} a_n = 0$.
 - (c) Elementary facts about the sine function tell us that a_1, a_2, a_3, \ldots is just the sequence,

$$\frac{\sqrt{3}}{2}, \ \frac{\sqrt{3}}{2}, \ 0, \ -\frac{\sqrt{3}}{2}, \ -\frac{\sqrt{3}}{2}, \ 0, \ \frac{\sqrt{3}}{2}, \ \frac{\sqrt{3}}{2}, \ \dots$$

Therefore, $\limsup_{n\to\infty} a_n = \sqrt{3}/2$ and $\liminf_{n\to\infty} a_n = -\sqrt{3}/2$.

2.6. #5. For any sequence $\{b_n\}_{n=1}^{\infty}$,

$$\limsup_{n \to \infty} b_n = \limsup_{k \to \infty} \sup_{k \ge n} b_k, \quad \text{and} \quad \liminf_{n \to \infty} b_n = \liminf_{k \to \infty} \inf_{k \ge n} b_k.$$

Apply this with $b_n := -a_n$ and use the fact that $\inf_{k \ge n}(-a_k) = -\sup_{k \ge n} a_k$ in order to see that

$$\liminf_{n \to \infty} (-a_n) = \lim_{k \to \infty} \inf_{k \ge n} (-a_k) = \lim_{n \to \infty} \left(-\sup_{k \ge n} a_k \right) = -\lim_{k \to \infty} \sup_{k \ge n} a_k = -\limsup_{k \to \infty} a_k,$$

as was asserted in the problem.