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Abstract. A classical theorem of S. Bochner states that a function f : Rn →
C is the Fourier transform of a finite Borel measure if and only if f is positive

definite. In 1938, I. Schoenberg found a beautiful complement to Bochner’s

theorem. We present a non-technical derivation of of Schoenberg’s theorem

that relies chiefly on the de Finetti theorem and the law of large numbers of

classical probability theory.

1. Introduction

A real-valued function g of n vectors is said to be positive semi-definite (some-
times, positive definite) if

∑k
i=1

∑k
j=1 g(xi−xj)cicj ≥ 0 for all n-vectors x1, . . . , xk

and all complex numbers c1, . . . , ck.
A classical theorem of S. Bochner (1955, Theorem 3.2.3, p. 58) asserts that

positive semi-definite functions are precisely those that are Fourier transforms of
finite measures. Let ‖ · ‖n denote the usual Euclidean norm in n dimensions. That
is, ‖x‖n = (x2

1 + · · ·+x2
n)1/2 for all x ∈ Rn. Then, the goal of this note is to present

a very simple proof of the following well-known theorem of I. J. Schoenberg (1938,
Theorem 2):

Schoenberg’s Theorem. Suppose f : R+ → R+ is continuous. Then, the fol-
lowing are equivalent:

(1) The function Rn 3 x 7→ f(‖x‖n) is positive semi-definite.
(2) The function R+ 3 t 7→ f(

√
t) is the Laplace transform of a finite Borel

measure on R+.

Originally, this theorem was used to describe isometric embeddings of Hilbert
spaces. Since its discovery, it has also found non-trivial connections to other diverse
areas ranging from classical, as well as abstract, harmonic analysis (Berg and Res-
sel, 1978; Berg et al., 1984; Kahane, 1985) to the measure theory of Banach spaces
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(Bretagnolle et al., 1965; 1965/1966; Bretagnolle et al., 1967; Christensen and Res-
sel, 1982; Koldobsky, 1996; Misiewicz, 1996a; 1996b; Koldobsky, 1999; Koldobsky
and Lonke, 1999), function theory (Ressel, 1974; Diaconis and Freedman, 2004a;
2004b) and to the foundations of statistics via de Finetti-type theorems (Freedman,
1963; Ressel, 1985; Diaconis and Freedman, 2004a; 2004b). For other relations, in
particular, to statistical mechanics, see the detailed historical section of Diaconis
and Freedman (2004b).

Although Schoenberg’s original proof is not too difficult to follow, it is somewhat
technical. P. Ressel (1976) has devised a simpler proof which rests on a character-
ization of Laplace transforms (Ressel, 1974, Satz 1) that is similar to Schoenberg’s
theorem. We are aware also of another simple proof, due to J. Bretagnolle, D.
Dacuhna–Castelle, and J.-L. Krivine (1965; 1965/1966; 1967). Their proof is simi-
lar to the one presented here, but is slightly more technical.

The present article aims to describe a self-contained, elementary, and brief deriva-
tion of Schoenberg’s theorem. Our proof assumes only a brief acquaintance with
real analysis and measure-theoretic probability theory. This proof is quite robust
and can be used to produce more general results; all one needs is a more general
setting in which a basic form of the de Finetti theorem and the law of large numbers
hold.

Since writing the first draft of this paper, we have found out about the work of
D. Kelker (1970, Theorem 10). Kelker’s proof is essentially the same as ours. J.
Kingman (1972) contains yet another rediscovery of Kelker’s proof.

Acknowledgements. Christian Berg brought to my attention the recent work
of Steerneman and Perlo-ten Kleij (2005), and Paul Ressel made an important
correction to the original draft. I am deeply endebted to them both.

2. The Proof

All notation and references to probability theory are standard and can be found
in any standard first-year graduate textbook.

Without loss of generality, we may suppose that f(0) = 1. Then, thanks to
Bochner’s theorem, Schoenberg’s theorem translates to the equivalence of the fol-
lowing two assertions:

(1◦) For all n ≥ 1 there exists a Borel probability measure µn on Rn such that

(2.1) f

√√√√ n∑
i=1

x2
i

 =
∫
Rn

eix·y µn(dy) ∀x := (x1, . . . , xn) ∈ Rn.
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(2◦) There exists a Borel probability measure ν on R+ such that

(2.2) f(t) =
∫ ∞

0

e−t2s/2 ν(ds) ∀t > 0.

Therefore, it suffices to prove that (1◦) and (2◦) are equivalent. The assertion,
“(2◦)⇒(1◦)” follows from a direct computation because ‖x‖n 7→ exp(−‖x‖2ns/2) is
manifestly a Fourier transform on Rn. So we prove only the converse. Henceforth,
we assume that (1◦) holds.

Our next lemma follows immediately from (1◦) and the uniqueness theorem.

Lemma 1. The family {µn}∞n=1 is consistent.

It might help to recall that “{µn}∞n=1 is consistent” means that for all n ≥ 1 and
all linear Borel sets A1, A2, . . . , µn(A1 × · · · ×An) = µn+1(A1 × · · ·An ×R).

Proof of Schoenberg’s Theorem. In accord with Lemma 1 and the Kolmogorov con-
sistency theorem, there exists an exchangeable stochastic process {Yk}∞k=1, on some
probability space (Ω,F ,P), such that for all n ≥ 1 and all Borel sets A ⊂ Rn,

(2.3) P{(Y1, . . . , Yn) ∈ A} = µn(A).

Choose and fix some t > 0, and introduce a sequence {Xi}∞i=1 of independent
random variables such that every Xi has the normal distribution with mean 0
and variance t2. We can assume, without loss of generality, that the Xi’s are
defined on the same probability space (Ω,F ,P). We first apply (1◦) with x :=
n−1/2(X1, . . . , Xn), and then take expectations, to deduce that for all n ≥ 1,

E

f

√√√√ 1
n

n∑
i=1

X2
i

 =
∫
Rn

exp
(
− t2‖y‖2n

2n

)
µn(dy)

= E

[
exp

(
− t2

2n

n∑
i=1

Y 2
i

)]
.

(2.4)

See (2.3) for the last identity. Now let n → ∞. The simplest form of the law of
large numbers dictates that

∑n
i=1 X2

i /n → VarX1 = t2 in probability. Therefore,
the left-hand side of (2.4) converges to f(t) by the dominated convergence theorem.

By the de Finetti theorem, the Yi’s are conditionally i.i.d. given the exchange-
able σ-algebra generated by the Yi’s. Thanks to the Kolmogorov strong law of
large numbers, and by the Fubini–theorem, L := limn→∞

1
n

∑n
i=1 Y 2

i exists a.s.
Moreover, the event {L < ∞} agrees upto null sets with {E[Y 2

1 |E ] < ∞}, where
E denotes the exchangeable σ-algebra of {Yi}∞i=1. By the dominated convergence
theorem, the right-hand side of (2.4) converges to E[exp(−t2L/2);L < ∞].

We have proved that f(t) = E[exp(−t2L/2);L < ∞] for a possibly-degenerate
non-negative random variable L. Set t = 0 to find that L is a proper random
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variable; i.e., 1 = f(0) = P{L < ∞}. Therefore, (2◦) follows with ν denoting the
distribution of L. �
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